

Periodic Run-On and Run-Off Control System Plan Fly Ash Landfill Area 2, Phase 1

Evergy Kansas Central, Inc.

Jeffrey Energy Center Project No. 117742

> Revision 0 10/1/2021

Periodic Run-On and Run-Off Control System Plan Fly Ash Landfill Area 2, Phase 1

prepared for

Evergy Kansas Central, Inc. Jeffrey Energy Center St Marys, Kansas

Project No. 117742

Revision 0 10/1/2021

prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

INDEX AND CERTIFICATION

Evergy Kansas Central, Inc. Periodic Run-On and Run-Off Control System Plan Fly Ash Landfill Area 2, Phase 1 Project No. 117742

Report Index

<u>Chapter</u>		Number
Number	Chapter Litle	of Pages
1.0	Background	2
2.0	Landfill Run-on and Run-off Controls	2
3.0	Run-off Control for §257.3-3	1
4.0	Amendment of Run-on and Run-off Control Plan	1
5.0	References	1
6.0	Record of Revisions	1
Appendix A	Supporting Calculations	42

Certification

I hereby certify, as a Professional Engineer in the state of Kansas, that the information in this document was assembled under my direct personal charge and that this periodic run-on and run-off control system plan meets the applicable requirements of 40 CFR 257.81. This report is not intended or represented to be suitable for reuse by the Evergy Kansas Central, Inc. or others without specific verification or adaptation by the Engineer.

Matter D Slaft

Matthew D. Bleything – KS PE # PE17686

Date: 10/1/2021

TABLE OF CONTENTS

Page No.

1.0		(GROUND	1-1
	1.1	Regulatory Requirements	1-1
2.0	LAND	FILL RUN-ON AND RUN-OFF CONTROLS	2-1
	2.1	Run-On Controls	2-1
	2.2	Run-Off Controls	2-2
3.0	RUN-	OFF CONTROL FOR §257.3-3	3-1
4.0		NDMENT OF RUN-ON AND RUN-OFF CONTROL PLAN	4-1
5.0	REFE	RENCES	5-1
6.0	RECO	ORD OF REVISIONS	6-1
-			
APPE		A – SUPPORTING CALCULATIONS	

LIST OF TABLES

Page No.

Table 2-1: Run-On Control Performance	2-1
Table 2-2: Run-On Control Performance	2-2

LIST OF ABBREVIATIONS

<u>Abbreviation</u>	Term/Phrase/Name
Burns & McDonnell	Burns & McDonnell Engineering Company, Inc.
CCR	Coal Combustion Residual
CFR	Code of Federal Regulations
cfs	Cubic Foot per second
CHDPE	corrugated high-density polyethylene
EPA	Environmental Protection Agency
HDPE	High-Density Polyethylene
HSG	Hydrologic Soil Group
JEC	Jeffrey Energy Center
K. A. R.	Kansas Administrative Regulations
KDHE	Kansas Department of Health and Environment
Landfill	Fly Ash Landfill Area 2, Phase 1
NRCS	Natural Resources Conservation Service
RCRA	Resource Conservation and Recovery Act
U.S.C.	United States Code

i

1.0 BACKGROUND

On April 17, 2015, the Environmental Protection Agency (EPA) issued the final version of the federal Coal Combustion Residual (CCR) Rule to regulate the disposal of CCR materials generated at coal-fired units. The rule is administered as part of the Resource Conservation and Recovery Act [RCRA, 42 United States Code (U.S.C.) §6901 et seq.], using the Subtitle D approach.

Evergy Kansas Central, Inc (Evergy) is subject to the CCR Rule and as such must develop a Run-On and Run-Off Control System Plan per 40 Code of Federal Regulations (CFR) §257.81. This report demonstrates and discusses the design for the Run-Ona and Run-Off Control system Plan for the Jeffrey Energy Center (JEC) Fly Ash Landfill Area 2, Phase 1 (Landfill), Located in St. Marys, Kansas.

Run-on controls for the JEC Landfill, as well as the current and post-closure run-off controls, were designed as part of permit applications to the Kansas Department of Health and Environment (KDHE). The Run-On and Post-Closure Run-Off Control System Plan provided herein are based on analysis of the permitted facility conditions. This run-on and run-off control system plan is in addition to, not in place of, any other applicable site permits, environmental standards, or work safety practices.

1.1 Facility Information

Name of Facility:	Jeffrey Energy Center
Name of CCR Unit:	Fly Ash Landfill Area 2
Name of Operator:	Evergy Kansas Central, Inc.
Facility Mailing Address:	25905 Jeffrey Rd, St Marys, KS 66536
Location:	Approximately six miles north of St Marys, Kansas in Pottawatomie County
Facility Description:	The JEC Landfill is located in the central-western portion of the JEC site in Pottawatomie County, Kansas, approximately 4.5 miles north of Belvue, Kansas, and approximately 4.3 miles west of highway 63.

1.2 Regulatory Requirements

Per 40 CFR §257.81, the Run-on and Run-off control system plan must contain documentation (including supporting engineering calculations) that the control system has been designed and constructed to meet the applicable requirements of 40 CFR 257.81. The owner or operator of a CCR unit must prepare a written plan that includes the information specified in 40 CFR 257.81 (a) and (b) which is as follows:

- (a) The owner or operator of an existing or new CCR landfill or any lateral expansion of a CCR landfill must design, construct, operate and maintain:
 - (1) A Run-on control system to prevent flow onto the active portion of the CCR unit during the peak discharge from a 24-hour, 25-year storm; and
 - (2) A run-off control system from the active portion of the CCR unit to collect and control at least the water volume resulting from a 24-hour, 25-year storm.
- (b) Run-off from the active portion of CCR unit must be handled in accordance with the surface water requirements under §257.3-3.

These items are addressed in Sections 2.0 and 3.0 of this document. Per 40 CFR §257.81(c)(5), Evergy must obtain certification from a qualified professional engineer that the run-on and run-off control system plan, and subsequent updates to the plan, meet the requirements of 40 CFR §257.81. This sealed document serves as that certification.

2.0 LANDFILL RUN-ON AND RUN-OFF CONTROLS

The Run-On and Run-Off control features were designed to convey the run-off from the 25-year, 24-hour storm event. The methods of determination of the peak flow rates and run-off volumes are based on the Soil Conservation Service's (SCS) [now known as the Natural Resources Conservation Service (NRCS)] run-off curve number method (NRCS, 1986) to calculate losses. Additional methods of determination are the Rational Method, Manning's equation to calculate channel depths, and HydroCAD Stormwater Modeling 10 (40 node s/n 08510). Phase 1 of the landfill encompasses an area of approximately 22 acres (with approximately 14.5 acres of lined landfill area) constructed as one cell. The balance of the constructed area is reserved for contact stormwater channels. The Landfill was designed to collect and contain the stormwater coming into contact with landfilled CCR material. Additionally, the design limits the chance of stormwater entering the landfill site from surrounding areas.

2.1 Run-On Controls

Run-on channels or ditches intercept off-site drainage and prevent it from running onto the working surface. The Landfill access road prevents run-on to the Landfill and also serves as an access road for the Landfill and leachate pond.

On the North side of the active face of the Landfill, a 4-foot-wide swale prevents run-on from entering the site. This is drained to the southeast where it discharges to an existing channel. The existing channel runs along the east side and is a minimum of 8-feet wide and a minimum of 5-feet deep. This stormwater then discharges in the JEC site's process water channel and ultimately to Tower Hill Lake.

The West side of the active face of the landfill is protected from run-on by an 8-foot-wide swale. This swale runs the length of landfill on the west side and discharges into the leachate pond.

Table 2-1 presents the excess capacities of the exterior ditch for the 25-year, 24-hour design storm event. For the purposes of this calculation, the ditch was evaluated at several different points which are intended to represent "typical" geometry and flow conditions.

Storm Water Sy	ystem Component	Calculated Excess Capacity	Units
Channels	Exterior Ditch North (4H:1V side slopes)	161.8	cubic feet per second
Unannelo	Exterior Ditch East (3H:1V side slopes)	686.49	cubic feet per second

Table 2-1: Run-On Control Performance

Supporting calculations are presented in Appendix A. As indicated in Table 2-1 and Appendix A, the landfill has significant excess capacity beyond the design 25-year, 24-hour storm event, therefore the runon protection system exceeds the requirement to provide protection from run-on from the 24-hour, 25year storm event.

2.2 Run-Off Controls

The site stormwater run-off predominantly drains east toward an existing ravine, which is the low point of Phase 1. The run-off will be collected in 8-foot-wide flat bottom ditches with variable side slopes (Typically 4H:1V) that parallel the perimeter of Phase 1. These ditches will be lined with 80 to 150-pound riprap and are located north, west and east side of the landfill. From the perimeter ditch, run-off is directed south where flow enters the Leachate Pond through four 24-in diameter high-density polyethylene (HDPE) culverts on the east side of the pond and two 24-in diameter high-density polyethylene (HDPE) culverts on the west side of the pond. The Leachate Pond and HDPE culverts were designed to collect and accommodate the 25-year, 24-hour storm event. The stormwater detained in the pond drains through a riser pipe outlet or an emergency spillway and discharges from the Leachate Pond to then flow into the JEC site process water channel and ultimately to Tower Hill Lake, which discharges to the NPDES permitted outfall. The performance of Tower Hill Lake in accordance with 40 CFR 257.81 has been validated previously by others and will not be repeated here.

Table 2-2 presents the excess capacities of the storm water run-off system components for the current landfill area for the 25-year, 24-hour design storm event. For the purposes of these calculations, it is assumed the active portion of the landfill has received interim cover with all stormwater runoff directed to the channels. The supporting calculations are presented in Appendix A.

Storm Water System Component		Capacity	Peak Flow (25-yr, 24-hr event)	Calculated Excess Capacity	Units
Stormwater Ponds	Stormwater Pond	1,188.00 Water EL.	1,184.31 Water EL.	3.86	ft of freeboard
Culverts	2x24" HHPE at West ditch to stormwater pond	72.04	64.29	7.75	cfs
	4x24" CHPE at East ditch to stormwater pond	83.16	77.94	5.22	cfs
Channala	Perimeter Ditch – West	558.68	64.29	494.39	cfs
Channels	Perimeter Ditch - Southeast	395.05	77.94	317.11	cfs

Table 2-2: Run-Off Control Performance

As indicated in Table 2-2 and Appendix A, the landfill has significant excess capacity beyond the design 25-year, 24-hour storm event, therefore the run-off protection system exceeds the requirement to provide protection from run-off from the 24-hour, 25-year storm event.

3.0 RUN-OFF CONTROL FOR §257.3-3

Per the CCR Rule, under Section 257.81(b), stormwater best management practices (BMPs) shall be employed at the site to comply with CFR 257.3-3, which stipulates that a facility shall not cause a discharge of pollutants, dredged material, or fill material to waters of the United States or cause non-point source pollution of waters of the United States. The landfill discharges to the JEC site process water channel and ultimately to Tower Hill Lake which discharges to the NPDES permitted outfall. Per the current NPDES permit, discharged water is tested for pollutants and the discharge meets the minimum regulatory requirements of the permit. Therefore, the facility does not cause a discharge of pollutants into waters of the United States that is in violation of the requirements of the NPDES under Section 402 of the Clean Water Act, and therefore meets the requirements of 40 CFR 257.81(b).

4.0 AMENDMENT OF RUN-ON AND RUN-OFF CONTROL PLAN

The owner or operator may amend the written run-off and run-on control system plan at any time provided the revised plan is placed in the facility's operating record as required by §257.105(g)(3). The owner or operator must amend the written run-on and runoff control system plan whenever there is a change in conditions that would substantially affect the written plan in effect. Additionally, the owner or operator of the CCR unit must prepare periodic run-on and runoff control system plans every five years. The date of completing the initial plan is the basis for establishing the deadline to complete the first subsequent plan.

The owner or operator may complete any required plan prior to the required deadline provided the completed plan is placed into the facility's operating record within a reasonable amount of time.

A written certification from a qualified professional engineer that the initial and any amendment of the written run-on and run-off control system plan meets the requirements of §257.81 must be obtained. Plan changes will be documented using the Revision History which follows this Plan. Changes to this Plan will be certified by a Qualified Professional Engineer.

5.0 REFERENCES

- U.S. Environmental Protection Agency, Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments, 40 CFR §257, Federal Register 80, Subpart D, April 17, 2015.
- 2. EPA Code of Federal Regulations. 40 CFR 257.70 Design criteria for new CCR landfills and any lateral expansion of a CCR landfill. 05 August 2016.
- 3. Western Air Maps, Inc, Topographic Survey, 2007.
- United States Department of Agriculture, Natural Resources Conservation Service. Urban Hydrology for Small Watersheds, Technical Release 55. June 1986. (210-VI-TR-55, Second Ed., June 1986)
- CB&I (a/k/a AECOM). Run-on and Run-off Control System Plan, Jeffrey Energy Center, Fly Ash Landfill, October 2016 and subsequent updates.

٦

Г

Т

Revision Number	Date	Revisions Made	By Whom
0	10/1/2021	Initial Issue	Burns & McDonnell

6.0 RECORD OF REVISIONS

APPENDIX A – SUPPORTING CALCULATIONS

ATTACHMENT 1 – CALCULATION SUMMARY SHEET AND REFERENCE DOCUMENTS

September 20, 2021

Evergy Kansas Central, Inc.

Supporting Calculations for the Jeffrey Energy Center CCR Landfill Periodic Run-on and Run-off Control System Plan

Burns & McDonnell (BMcD) was retained by Evergy Kansas Central, Inc. (Evergy) to provide engineering support for the periodic update to the Run-on and Run-off Control System Plan for the Jeffrey Energy Center CCR Landfill which is required as part of the Federal Coal Combustion Residuals Rule (CCR Rule). Calculations were prepared to evaluate the capacity of the landfill run-on and run-off controls which include the leachate pond, perimeter ditches, and culverts which convey flow from the ditches to the ponds. Additionally, calculations were prepared to evaluate the capacity of the exterior ditch which is used for run-on control. HydroCAD 10.00-24 (HydroCAD) was used to model the drainage areas for each of these features in order to determine peak flows and/or peak water surface elevations.

Ground cover types and flow paths were input into HydroCAD to compute the time of concentration, weighted curve numbers, and post-closure peak flows using the SCS Unit Hydrograph method. Cover type curve numbers were selected within the HydroCAD model based on the hydrologic soil group. According to National Resource Conservation Service (NRCS) Web Soil Survey, the entire site soil belongs to hydrologic soil group (HSG) D. Cover types in the drainage areas include riprap, gravel, geomembrane and bottom ash. The time of concentration (T_c) was input based on the flow path for the hydraulically most distant point within each watershed. A minimum T_c of 6-minutes was used for all drainage areas. The 25-year, 24-hour design storm depth of 5.90 inches was obtained from the National Oceanic and Atmospheric Administration (NOAA) Precipitation Frequency Data Server.

FlowMaster was used to determine the full flow capacity of the culvert and channel features. Channel and culvert geometry were determined using existing survey data and design drawings. Channel features were evaluated at typical cross section locations.

The calculations are broken into three groupings: pond, culverts, and channels. A list of the calculations attached to this memorandum is as follows:

- Attachment 1 Calculation Summary Sheet and Reference Documents
- Attachment 2 Pond Calculations:
 - SK-001 Pond Drainage Areas
 - o HydroCAD Report for 25-year, 24-hour storm event
- Attachment 3 Culvert Calculations:
 - SK-002 Culvert Drainage Areas
 - HydroCAD Report for 25-year, 24-hour storm event
 - \circ FlowMaster Worksheet for 4x24" HDPE at southeast ditch to stormwater pond

Evergy Kansas Central, Inc. September 20, 2021 Page 2

- FlowMaster Worksheet for 2x24" HDPE at west ditch to stormwater pond
- Attachment 4 Channel Calculations
 - o SK-003 Channel Drainage Areas
 - HydroCAD Report for 25-year, 24-hour storm event
 - FlowMaster Worksheet for North Riprapped Exterior Ditch
 - o FlowMaster Worksheet for East Grassed Exterior Ditch
 - FlowMaster Worksheet for West Riprapped Perimeter Ditch
 - FlowMaster Worksheet for Southeast Riprapped Perimeter Ditch

Results

The calculated peak values were compared with the full capacity values in order to determine excess capacity for each of the stormwater run-off and run-on control features. A summary of the calculated excess capacities is included in Table 1 and Table 2 for the run-on controls and run-off controls respectively.

	Storm Water System Component	Capacity	Peak Flow (25- yr, 24- hr event)	Calculated Excess Capacity	Units
	Exterior Ditch – North (4H:1V side slopes)	176.67	14.83	161.84	cfs
Channels	Exterior Ditch – East (3H:1V side slopes)	754.74	68.25	686.49	cfs

Table 1: Stormwater Run-on Controls – Calculated Excess Capacity

Table 2: Stormwater Run-off Controls – Calculated Excess Capacity

Stor	m Water System Component	Capacity	Peak Flow (25-yr, 24-hr event)	Calculated Excess Capacity	Units
Stormwater Ponds	Leachate Stormwater Pond	1,188.00 Water EL	1,184.14 Water EL	3.86	ft of freeboard
Culverts	2x24" HDPE at West ditch to stormwater pond	72.04	64.29	7.75	cfs
	4x24" HDPE at Southeast ditch to stormwater pond	83.16	77.94	5.22	cfs

Evergy Kansas Central, Inc. September 20, 2021 Page 3

Stor	m Water System Component	Capacity	Peak Flow (25-yr, 24-hr event)	Calculated Excess Capacity	Units
Channels	Perimeter Ditch – West (4H:1V side slopes)	558.68	64.29	494.39	cfs
	Perimeter Ditch – Southeast (4H:1V side slopes)	395.05	77.94	317.11	cfs

Based on the results of the calculations, the run-off and run-on controls at the Jeffrey Energy Center CCR Landfill are adequate for conveying and controlling flows from the 25-year, 24-hour storm event.

Reference 2

WORKSHEET TITLE:	Evergy - Jeffrey Energy Center Landfill Run-On and Run-Off Controls	CALCULATION NO .:	C - 001
CREATED:	9/20/2021	REVISION:	А
PERFORMED BY:	C. Dominguez	REVIEWED BY:	Matt Bleything
OBJECTIVE:	Check Jeffrey Energy Center CCR Landfill run-off controls for 25-year, 24-hour	storm	

REFERENCES:

- Natural Resources Conservation Service (June 1986). TR-55: Urban Hydrology for Small Watersheds.

 Retrieved from :
 www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf
- 2 US Department of Agriculture. (June 2021). Custom soil map for Pottawatomie County, Kansas
- Retrieved from : <u>http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</u>
- 3 National Oceanic and Atmospheric Administration. (June 2021). NOAA Atlas 14, Volume 8, Version 2. [Point precipitation frequency estimates for Saint Marys, Kansas, USA].

Retrieved from : https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=mo

SOFTWARE:

- 1 HydroCAD 10.00-24 (40 node s/n 08510)
- 2 Bentley FlowMaster Connect Edition

ASSUMPTIONS:

- 1 Hydrologic Soil Group D Reference 2
- 2 Depth for 25-year, 24-hour storm is 5.90" Reference 3

CALCULATIONS:

Refer to the following documents:

-SK-001, SK-002 and SK-003 for drainage area delineations for the pond, culverts and channels respectively -see HydroCAD reports for Peak Flow calculations -see FlowMaster reports for Capacity calculations

RUN-ON CONTROLS

			Peak Flow (25-	Calculated	
			yr, 24-hr	Excess	
Storm W	/ater System Component	Capacity	event)	Capacity	Units
Channels	Exterior Ditch - North (4H:1V side Slopes)	176.7	14.8	161.8	cfs
	Exterior Ditch - East (3H:1V side Slopes)	754.7	68.3	686.5	cfs

RUN-OFF CONTROLS

			Peak Flow (25-	Calculated		
			yr, 24-hr	Excess		
Storm V	Vater System Component	Capacity	event)	Capacity	Units	
Stormwater	Loachatos Stormwator Bond	1188	1184.14	7.96	ft of frooboard	
Ponds	Leachates Stornwater Fond	Water EL	Water EL	3.00	it of freeboard	
	2x24" HDPE at West ditch to	72.0*	647	70	ofo	
Culvorte	stormwater pond	72.0	04.5	7.0	CIS	
Curverts	4x24" HDPE at Southwest	97 2**	77.0	5.2	ofo	
	ditch to stormwater pond	03.2	77.5	J.2	CIS	
	Perimenter Ditch - West (4H:1V	EE0 7	647	404.4	ofo	
Channels	side slopes)	556.7	04.5	494.4	CIS	
	Perimenter Ditch - Southeast					
	(4H:1V side slopes)	395.1	77.9	317.1	cfs	

* 72.0 = 2 culverts x36.0 cfs capacity per culvert

**83.2 = 4 culverts x 20.8 cfs capacity per culvert

USDA Natural Resources

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
4590	Clime-Sogn complex, 3 to 20 percent slopes	D	244.0	100.0%
9983	Gravel pits and quarries		0.1	0.0%
Totals for Area of Intere	st	244.1	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

USDA

Reference 3

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Saint Marys, Kansas, USA* Latitude: 39.2834°, Longitude: -96.1146° Elevation: 1299.64 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Average r	ecurrence	interval (ye	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.402 (0.321-0.510)	0.475 (0.379-0.602)	0.598 (0.475-0.759)	0.704 (0.557-0.895)	0.855 (0.658-1.11)	0.976 (0.735-1.27)	1.10 (0.804-1.45)	1.23 (0.866-1.65)	1.41 (0.957-1.91)	1.55 (1.03-2.11)
10-min	0.589 (0.470-0.746)	0.695 (0.555-0.882)	0.875 (0.696-1.11)	1.03 (0.815-1.31)	1.25 (0.964-1.63)	1.43 (1.08-1.87)	1.61 (1.18-2.13)	1.81 (1.27-2.41)	2.07 (1.40-2.80)	2.28 (1.50-3.09)
15-min	0.718 (0.574-0.910)	0.848 (0.677-1.08)	1.07 (0.849-1.36)	1.26 (0.994-1.60)	1.53 (1.18-1.98)	1.74 (1.31-2.28)	1.97 (1.44-2.60)	2.20 (1.55-2.94)	2.52 (1.71-3.42)	2.77 (1.83-3.77)
30-min	1.01 (0.809-1.28)	1.20 (0.958-1.52)	1.52 (1.21-1.93)	1.79 (1.42-2.28)	2.18 (1.68-2.83)	2.49 (1.87-3.24)	2.81 (2.05-3.70)	3.14 (2.20-4.19)	3.59 (2.43-4.86)	3.94 (2.60-5.36)
60-min	1.32 (1.06-1.67)	1.57 (1.26-2.00)	2.00 (1.59-2.54)	2.36 (1.87-3.01)	2.88 (2.22-3.74)	3.29 (2.48-4.29)	3.72 (2.71-4.90)	4.16 (2.92-5.55)	4.75 (3.22-6.43)	5.22 (3.45-7.10)
2-hr	1.63 (1.31-2.04)	1.95 (1.57-2.44)	2.48 (1.99-3.12)	2.94 (2.35-3.70)	3.58 (2.78-4.60)	4.10 (3.11-5.29)	4.63 (3.41-6.04)	5.17 (3.67-6.85)	5.92 (4.05-7.94)	6.50 (4.34-8.77)
3-hr	1.82 (1.48-2.27)	2.18 (1.77-2.72)	2.78 (2.25-3.47)	3.30 (2.65-4.12)	4.03 (3.15-5.15)	4.61 (3.52-5.92)	5.21 (3.86-6.76)	5.82 (4.16-7.67)	6.67 (4.59-8.90)	7.32 (4.92-9.83)
6-hr	2.15 (1.76-2.65)	2.57 (2.11-3.17)	3.28 (2.68-4.05)	3.89 (3.16-4.82)	4.76 (3.76-6.02)	5.45 (4.21-6.92)	6.16 (4.61-7.92)	6.89 (4.97-9.00)	7.90 (5.50-10.5)	8.68 (5.90-11.6)
12-hr	2.48 (2.05-3.02)	2.95 (2.44-3.59)	3.74 (3.09-4.57)	4.42 (3.63-5.41)	5.40 (4.32-6.76)	6.18 (4.83-7.79)	6.99 (5.30-8.92)	7.84 (5.72-10.1)	8.99 (6.33-11.8)	9.90 (6.80-13.1)
24-hr	2.86 (2.40-3.45)	3.34 (2.79-4.02)	4.15 (3.46-5.01)	4.86 (4.04-5.88)	5.90 (4.78-7.33)	6.74 (5.34-8.42)	7.63 (5.85-9.65)	8.57 (6.33-11.0)	9.86 (7.03-12.9)	10.9 (7.57-14.3)
2-day	3.32 (2.82-3.96)	3.78 (3.20-4.51)	4.59 (3.87-5.47)	5.30 (4.45-6.35)	6.37 (5.22-7.84)	7.25 (5.81-8.97)	8.18 (6.35-10.3)	9.18 (6.87-11.7)	10.6 (7.64-13.7)	11.7 (8.22-15.2)
3-day	3.61 (3.08-4.27)	4.12 (3.51-4.88)	5.00 (4.24-5.92)	5.76 (4.87-6.85)	6.88 (5.67-8.40)	7.80 (6.28-9.57)	8.75 (6.83-10.9)	9.76 (7.34-12.3)	11.2 (8.10-14.3)	12.3 (8.68-15.9)
4-day	3.87 (3.31-4.55)	4.42 (3.78-5.21)	5.36 (4.57-6.32)	6.17 (5.24-7.30)	7.34 (6.06-8.89)	8.28 (6.69-10.1)	9.25 (7.25-11.5)	10.3 (7.75-12.9)	11.7 (8.51-14.9)	12.8 (9.07-16.4)
7-day	4.60 (3.98-5.37)	5.22 (4.50-6.09)	6.25 (5.38-7.31)	7.14 (6.11-8.37)	8.40 (7.00-10.1)	9.41 (7.68-11.4)	10.4 (8.26-12.8)	11.5 (8.79-14.4)	13.0 (9.57-16.5)	14.2 (10.2-18.1)
10-day	5.26 (4.57-6.10)	5.94 (5.16-6.89)	7.08 (6.13-8.23)	8.06 (6.94-9.39)	9.45 (7.91-11.3)	10.5 (8.65-12.7)	11.7 (9.29-14.2)	12.9 (9.85-15.9)	14.4 (10.7-18.2)	15.7 (11.3-20.0)
20-day	7.04 (6.19-8.07)	8.02 (7.04-9.20)	9.62 (8.42-11.0)	10.9 (9.54-12.6)	12.8 (10.8-15.0)	14.2 (11.8-16.8)	15.6 (12.5-18.8)	17.1 (13.2-20.9)	19.0 (14.2-23.7)	20.4 (14.9-25.8)
30-day	8.56 (7.58-9.75)	9.77 (8.64-11.1)	11.7 (10.3-13.4)	13.3 (11.7-15.2)	15.4 (13.1-17.9)	17.0 (14.2-20.0)	18.6 (15.0-22.2)	20.2 (15.7-24.5)	22.2 (16.7-27.5)	23.7 (17.5-29.8)
45-day	10.6 (9.42-12.0)	12.0 (10.7-13.6)	14.3 (12.7-16.2)	16.1 (14.2-18.3)	18.4 (15.7-21.2)	20.2 (16.9-23.5)	21.9 (17.7-25.9)	23.5 (18.4-28.3)	25.5 (19.2-31.3)	26.9 (19.9-33.6)
60-day	12.4 (11.1-13.9)	13.9 (12.5-15.7)	16.4 (14.6-18.5)	18.3 (16.2-20.7)	20.8 (17.8-23.7)	22.5 (18.9-26.1)	24.2 (19.7-28.4)	25.7 (20.2-30.8)	27.6 (20.9-33.7)	28.8 (21.4-35.9)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Duration							
5-min	2-day						
10-min	- 3-day						
- 15-min	— 4-day						
30-min	- 7-day						
- 60-min	— 10-day						
- 2-hr	— 20-day						
— 3-hr	— 30-day						
— 6-hr	— 45-day						
- 12-hr	- 60-day						
— 24-hr							

NOAA Atlas 14, Volume 8, Version 2

Created (GMT): Thu Jul 8 14:17:03 2021

Back to Top

Maps & aerials

Small scale terrain

Large scale terrain

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

ATTACHMENT 2 – POND CALCULATIONS

^{9/24/2021 \\}bmcd\dfs\Clients\ENR\WestarEnr\108337_JECFIyAshLF\Design\Civil\Dsgn\Landfill\ROR0 Control System\Sketches\SK-001.dgn

	project
EVERGY	117742
Y ENERGY CENTER	contract
-OFF CONTROL SYSTEM	<u> </u>
DRAINAGE AREAS H LANDFILL AREA I	SK - 001
H LANDFILL AREA I	

Area Listing (all nodes)

Are	ea CN	Description
(acre	s)	(subcatchment-numbers)
15.64	48 94	Fallow, bare soil, HSG D (A, B)
0.24	41 91	Gravel roads, HSG D (A, B)
0.30	00 96	Gravel surface, HSG D (3S)
4.49	90 98	Paved roads w/curbs & sewers, HSG D (3S, B)
4.67	70 98	Water Surface, HSG D (A)

Time span=1.00-46.00 hrs, dt=0.05 hrs, 901 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 3S: Pond Area	Runoff Area=1.940 ac 84.54% Impervious Runoff Depth>5.66" Flow Length=133' Tc=6.0 min CN=98 Runoff=15.87 cfs 0.915 af
Subcatchment A: West Runoff	Runoff Area=9.289 ac 50.27% Impervious Runoff Depth=5.43" Flow Length=2,214' Tc=11.3 min CN=96 Runoff=64.29 cfs 4.202 af
Subcatchment B: Southeast Runoff	Runoff Area=14.120 ac 20.18% Impervious Runoff Depth=5.31" Flow Length=1,873' Tc=13.4 min CN=95 Runoff=91.54 cfs 6.251 af
Pond 4P: Pond	Peak Elev=1,184.14' Storage=459,913 cf Inflow=166.37 cfs 11.368 af Outflow=1.94 cfs 0.993 af
Link 5L: Outlet Pond Structure	Inflow=1.94 cfs 0.993 af Primary=1.94 cfs 0.993 af

Summary for Subcatchment 3S: Pond Area

Runoff = 15.87 cfs @ 11.96 hrs, Volume= 0.915 af, Depth> 5.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-46.00 hrs, dt= 0.05 hrs Type II 24-hr 25-Yr, 24-Hr Rainfall=5.90"

Area ((ac)	CN [)es	cription				
1.0	640	98 F	Paved roads w/curbs & sewers, HSG D					
0.3	300	96 0	Gravel surface, HSG D					
1.9	940	98 V	Weighted Average					
0.3	300	1	5.4	6% Pervio	us Area			
1.0	640	8	4.5	4% Imperv	/ious Area			
Tc	Length	n Slo	ре	Velocity	Capacity	Description		
(min)	(feet)) (ft	/ft)	(ft/sec)	(cfs)			
1.1	68	0.25	20	1.07		Sheet Flow, down flow to pond		
						Fallow n= 0.050 P2= 3.34"		
0.2	65	5 0.00	50	5.52	17.33	Pipe Channel,		
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'		
						n= 0.012 Corrugated PP, smooth interior		
1.3	133	3 Tota	I, I	ncreased t	o minimum	Tc = 6.0 min		

Subcatchment 3S: Pond Area

Summary for Subcatchment A: West Runoff

[47] Hint: Peak is 361% of capacity of segment #1
[47] Hint: Peak is 442% of capacity of segment #2
[47] Hint: Peak is 361% of capacity of segment #3
[47] Hint: Peak is 625% of capacity of segment #4
[47] Hint: Peak is 240% of capacity of segment #5
[47] Hint: Peak is 510% of capacity of segment #6
[47] Hint: Peak is 371% of capacity of segment #7

D		04.00	10.00	V () [1 000 . 5	
Runott	=	64.29 CIS @	12.02 nrs,	voiume=	4.202 af,	Deptn= 5.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-46.00 hrs, dt= 0.05 hrs Type II 24-hr 25-Yr, 24-Hr Rainfall=5.90"

Area	(ac) C	N Desc	cription		
0.	150 9	1 Grav	/el roads, l	HSG D	
4.	469 9	4 Fallo	ow, bare so	oil, HSG D	
4.	670 9	8 Wate	er Surface	, HSG D	
9.	289 9	6 Weig	ghted Aver	rage	
4.	619	49.7	3% Pervio	us Area	
4.	670	50.2	7% Imper	vious Area	
То	Longth	Slope	Volocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)		Description
<u> (IIIII)</u> <u> </u>	883	0.0300	3 57	17.83	Tran/Vee/Rect Channel Flow
4.1	005	0.0000	5.57	17.00	Bot W=8.00' D=0.50' $7=4.0$ '/' Top W=12.00'
					n= 0.040
3.0	520	0.0200	2.91	14.56	Trap/Vee/Rect Channel Flow.
					Bot.W=8.00' D=0.50' Z= 4.0 '/' Top.W=12.00'
					n= 0.040
1.3	284	0.0300	3.57	17.83	Trap/Vee/Rect Channel Flow,
					Bot.W=8.00' D=0.50' Z= 4.0 '/' Top.W=12.00'
					n= 0.040
1.0	125	0.0100	2.06	10.29	Trap/Vee/Rect Channel Flow,
					Bot.W=8.00° D=0.50° Z= 4.0 °/° Top.W=12.00°
0.6	170	0.0675	5 25	26.74	n= 0.040 Tran/Voo/Poet Channel Flow
0.0	170	0.0075	5.55	20.74	Bot $W=8.00'$ D=0.50' $Z=4.0'/'$ Top $W=12.00'$
					n = 0.040
1.1	160	0.0150	2.52	12.61	Trap/Vee/Rect Channel Flow.
					Bot.W=8.00' D=0.50' Z= 4.0 '/' Top.W=12.00'
					n= 0.040
0.2	64	0.0050	5.52	17.33	Pipe Channel,
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.012

11.3 2,214 Total

Subcatchment A: West Runoff

Summary for Subcatchment B: Southeast Runoff

[47] Hint: Peak is 1240% of capacity of segment #2
[47] Hint: Peak is 391% of capacity of segment #3
[47] Hint: Peak is 407% of capacity of segment #4
[47] Hint: Peak is 1258% of capacity of segment #5
[47] Hint: Peak is 1577% of capacity of segment #6

[47] Hint: Peak is 528% of capacity of segment #7

Runoff = 91.54 cfs @ 12.04 hrs, Volume= 6.251 af, Depth= 5.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-46.00 hrs, dt= 0.05 hrs Type II 24-hr 25-Yr, 24-Hr Rainfall=5.90"

Area ((ac) C	N Dese	cription		
0.0	091 9	1 Grav	/el roads, l	HSG D	
11.	179 9	94 Fallo	ow, bare so	oil, HSG D	
2.8	850 9	8 Pave	ed roads w	/curbs & se	ewers, HSG D
14.	120 9	95 Weig	ghted Avei	rage	
11.:	270	79.8	2% Pervio	us Area	
2.8	850	20.1	8% Imperv	/ious Area	
-				A B	
IC (mim)	Length	Slope	Velocity	Capacity	Description
(min)		(11/11)	(ft/sec)		
0.4	470	0.8000	18.41	92.05	Trap/Vee/Rect Channel Flow,
					Bot.W=8.00° D=0.50° Z= 4.0° Top.W=12.00°
2.0	054	0.0050	4 4 4	7.00	n= 0.040 Tren Mas / Dest Chennel Flow
2.9	254	0.0050	1.44	7.38	I rap/vee/Rect Channel Flow,
					D01.00 - 0.00 D - 0.00 Z - 0.0 & 0.0 / 10 - 12.00
0.6	111	0.0460	1 26	22 /1	Tran Maa/Bact Channel Flow
0.0	144	0.0400	4.20	23.41	Hap/vee/Rect Channel Flow,
					$D_{0.00} = 0.00$ $D_{-0.00} = 0.07$ $10p.00 = 14.00$
12	302	0.0450	1 28	22/10	Tran/Veo/Pect Channel Flow
1.2	502	0.0400	4.20	22.43	Bot $W=8.00'$ D=0.50' Z= 5.0 '/' Top $W=13.00'$
					n = 0.040 Ripran 12-inch
48	418	0 0050	1 46	7 28	Tran/Vee/Rect Channel Flow
4.0	410	0.0000	1.40	1.20	Bot W=8.00' D=0.50' $Z = 4.0 '/$ Top W=12.00'
					n=0.040 Riprap 12-inch
3.3	220	0.0030	1.11	5.81	Trap/Vee/Rect Channel Flow.
0.0				0101	Bot.W=8.00' D=0.50' Z= 6.0 & 4.0 '/' Top.W=13.00'
					n= 0.040 Riprap, 12-inch
0.2	65	0.0050	5.52	17.33	Pipe Channel
	-	-			24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.012 Corrugated PP, smooth interior

13.4 1,873 Total

Subcatchment B: Southeast Runoff

Summary for Pond 4P: Pond

Inflow Ar	ea =	25.349 ac, 3	36.14% Impe	ervious,	Inflow	Depth >	5.38	' for 25-እ	′r, 24-Hr eve	nt
Inflow	=	166.37 cfs @	12.03 hrs,	Volume	=	11.368	af			
Outflow	=	1.94 cfs @	20.33 hrs,	Volume	=	0.993	af, A	tten= 99%,	Lag= 498.2	min
Primary	=	1.94 cfs @	20.33 hrs,	Volume	=	0.993	af			

Routing by Dyn-Stor-Ind method, Time Span= 1.00-46.00 hrs, dt= 0.05 hrs Peak Elev= 1,184.14' @ 20.33 hrs Surf.Area= 57,524 sf Storage= 459,913 cf

Plug-Flow detention time= 939.8 min calculated for 0.993 af (9% of inflow) Center-of-Mass det. time= 573.4 min (1,335.7 - 762.3)

Volume	Invert	Avail.Stor	age Storag	e Description	
#1	1,173.00'	704,20	2 cf Custor	m Stage Data (Pr	ismatic) Listed below (Recalc)
Elevation	Su	ırf.Area	Inc.Store	Cum.Store	
(feet)		(sq-ft)	(cubic-feet)	(cubic-feet)	
1,173.00		26,500	0	0	
1,174.00		28,884	27,692	27,692	
1,176.00		34,070	62,954	90,646	
1,178.00		39,483	73,553	164,199	
1,180.00		44,550	84,033	248,232	
1,182.00		50,986	95,536	343,768	
1,184.00		57,078	108,064	451,832	
1,186.00		63,396	120,474	572,306	
1,188.00		68,500	131,896	704,202	
Device F	Routing	Invert	Outlet Devic	es	
#1 F	Primary	1,184.00'	Custom We Head (feet) Width (feet)	ir/Orifice, Cv= 2.0 0.00 1.00 10.00 31.00	62 (C= 3.28)

Primary OutFlow Max=1.94 cfs @ 20.33 hrs HW=1,184.14' TW=0.00' (Dynamic Tailwater) **1=Custom Weir/Orifice** (Weir Controls 1.94 cfs @ 1.20 fps)

Pond 4P: Pond

Summary for Link 5L: Outlet Pond Structure

Inflow A	Area =	25.349 ac, 36.14% Impervious, Inf	flow Depth > 0.47"	for 25-Yr, 24-Hr event
Inflow	=	1.94 cfs @ 20.33 hrs, Volume=	0.993 af	
Primary	/ =	1.94 cfs @ 20.33 hrs, Volume=	0.993 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-46.00 hrs, dt= 0.05 hrs

Link 5L: Outlet Pond Structure

ATTACHMENT 3 – CULVERT AND DITCH CALCULATIONS

9/24/2021 \\bmcd\dfs\Clients\ENR\WestarEnr\108337_JECFIyAshLF\Design\Civil\Dsgn\Landfill\RORO_Control System\Sketches\SK-002.dgn

Area Listing (all nodes)

Ar	ea CN	D	escription
(acre	es)	(s	subcatchment-numbers)
15.6	48 94	F	allow, bare soil, HSG D (A, B)
0.2	41 91	G	Gravel roads, HSG D (A, B)
7.5	20 98	P	aved roads w/curbs & sewers, HSG D (A, B)
23.4	09 95	5 Т	OTAL AREA

Time span=1.00-46.00 hrs, dt=0.05 hrs, 901 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment B: Southeast Runoff Runoff Area=14.120 ac 20.18% Impervious Runoff Depth=5.31" Flow Length=1,873' Tc=19.1 min CN=95 Runoff=77.94 cfs 6.251 af Pond 3P: Southeast Culvert Peak Elev=1,228.65' Inflow=77.94 cfs 6.251 af 24.0" Round Culvert n=0.012 L=65.0' S=0.0051 '/' Outflow=77.94 cfs 6.251 af Pond 4P: West Culvert Peak Elev=1,215.09' Inflow=64.29 cfs 4.202 af 24.0" Round Culvert n=0.012 L=64.0' S=0.0050 '/' Outflow=64.29 cfs 4.202 af Link 1L: 2x24" HDPE Inflow=64.29 cfs 4.202 af Link 2L: 4x24" HDPE Inflow=77.94 cfs 6.251 af Pimary=64.29 cfs 4.202 af Pimary=77.94 cfs 6.251 af Pimary=77.94 cfs 6.251 af	Subcatchment A: West Runoff	Runoff Area=9.289 ac 50.27% Impervious Runoff Depth=5.43" Flow Length=2,214' Tc=11.3 min CN=96 Runoff=64.29 cfs 4.202 af
Pond 3P: Southeast Culvert Peak Elev=1,228.65' Inflow=77.94 cfs 6.251 af 24.0" Round Culvert n=0.012 L=65.0' S=0.0051 '/ Outflow=77.94 cfs 6.251 af 24.0" Round Culvert n=0.012 L=64.0' S=0.0050 '/ Outflow=64.29 cfs 4.202 af 24.0" Round Culvert n=0.012 L=64.0' S=0.0050 '/ Outflow=64.29 cfs 4.202 af Primary=64.29 cfs 4.202 af Primary=64.29 cfs 4.202 af Primary=64.29 cfs 4.202 af 6.251 af Primary=64.29 cfs 4.202 af 2.202 af 1.202 af 2.202 af 2	Subcatchment B: Southeast Runo	ff Runoff Area=14.120 ac 20.18% Impervious Runoff Depth=5.31" Flow Length=1,873' Tc=19.1 min CN=95 Runoff=77.94 cfs 6.251 af
24.0" Round Culvert n=0.012 L=65.0' S=0.0051 '/' Outflow=77.94 cfs 6.251 af Pond 4P: West Culvert Peak Elev=1,215.09' Inflow=64.29 cfs 4.202 af 24.0" Round Culvert n=0.012 L=64.0' S=0.0050 '/' Outflow=64.29 cfs 4.202 af Link 1L: 2x24" HDPE Inflow=64.29 cfs 4.202 af Link 2L: 4x24" HDPE Inflow=77.94 cfs 6.251 af	Pond 3P: Southeast Culvert	Peak Elev=1,228.65' Inflow=77.94 cfs 6.251 af
Pond 4P: West Culvert Peak Elev=1,215.09' Inflow=64.29 cfs 4.202 af 24.0" Round Culvert n=0.012 L=64.0' S=0.0050 '/' Outflow=64.29 cfs 4.202 af Link 1L: 2x24" HDPE Inflow=64.29 cfs 4.202 af Link 2L: 4x24" HDPE Inflow=77.94 cfs 6.251 af	24.0"	Round Culvert n=0.012 L=65.0' S=0.0051 '/' Outflow=77.94 cfs 6.251 af
24.0" Round Culvert n=0.012 L=64.0' S=0.0050 '/' Outflow=64.29 cfs 4.202 af Link 1L: 2x24" HDPE Link 2L: 4x24" HDPE Inflow=77.94 cfs 6.251 af Primary=77.94 cfs 6.251 af	Pond 4P: West Culvert	Peak Elev=1,215.09' Inflow=64.29 cfs 4.202 af
Link 1L: 2x24" HDPE Inflow=64.29 cfs 4.202 af Primary=64.29 cfs 4.202 af Link 2L: 4x24" HDPE Inflow=77.94 cfs 6.251 af Primary=77.94 cfs 6.251 af	24.0"	Round Culvert n=0.012 L=64.0' S=0.0050 '/' Outflow=64.29 cfs 4.202 af
Link 2L: 4x24" HDPE Primary=64.29 cfs 4.202 af Inflow=77.94 cfs 6.251 af Primary=77.94 cfs 6.251 af	Link 1L: 2x24" HDPE	Inflow=64.29 cfs 4.202 af
Link 2L: 4x24" HDPE Inflow=77.94 cfs 6.251 af Primary=77.94 cfs 6.251 af		Primary=64.29 cfs 4.202 af
Primary=77.94 cfs 6.251 af	Link 2L: 4x24" HDPE	Inflow=77.94 cfs 6.251 af
		Primary=77.94 cfs 6.251 af

Total Runoff Area = 23.409 acRunoff Volume = 10.452 afAverage Runoff Depth = 5.36"67.88% Pervious = 15.889 ac32.12% Impervious = 7.520 ac

Subcatchment A: West Runoff

Summary for Subcatchment B: Southeast Runoff

Runoff = 77.94 cfs @ 12.11 hrs, Volume= 6.251 af, Depth= 5.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-46.00 hrs, dt= 0.05 hrs Type II 24-hr 25-Yr, 24-Hr Rainfall=5.90"

Area ((ac) C	N Des	cription		
0.0	091 9	1 Grav	/el roads, l	HSG D	
11.1	179 9	4 Fallo	ow, bare so	oil, HSG D	
2.8	850 g	8 Pave	ed roads w	/curbs & se	ewers, HSG D
14.1	120 9	5 Weig	ghted Aver	age	
11.2	270	79.8	2% Pervio	us Area	
2.8	850	20.1	8% Imperv	∕ious Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.9	254	0.0050	1.44	7.38	Trap/Vee/Rect Channel Flow,
					Bot.W=8.00' D=0.50' Z= 6.0 & 3.0 '/' Top.W=12.50'
					n= 0.040 Riprap, 12-inch
0.6	144	0.0460	4.26	23.41	Trap/Vee/Rect Channel Flow,
					Bot.W=8.00' D=0.50' Z= 6.0 '/' Top.W=14.00'
4.0	000	0.0450	4 00	00.40	n= 0.040 Riprap, 12-inch
1.2	302	0.0450	4.28	22.49	
					BOI.VV=8.00 D=0.50 $Z=5.0 / 10p.VV=13.00$
1 9	110	0.0050	1 /6	7 29	TranVec/Post Channel Flow
4.0	410	0.0050	1.40	1.20	Rot $W=8.00'$ D=0.50' Z= 4.0.1' Top $W=12.00'$
					n = 0.040 Riprap 12-inch
33	220	0 0030	1 11	5 81	Tran/Vee/Rect Channel Flow
0.0	220	0.0000	1.11	0.01	Bot W=8.00' D=0.50' $Z = 6.0 \& 4.0 '/'$ Top W=13.00'
					n=0.040 Riprap 12-inch
0.2	65	0.0050	5.52	17.33	Pipe Channel.
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.012 Corrugated PP, smooth interior
6.1	470	0.8000	1.29	1.29	Trap/Vee/Rect Channel Flow,
					Bot.W=0.00' D=0.50' Z= 4.0 '/' Top.W=4.00'
					n= 0.400
19.1	1,873	Total			

Subcatchment B: Southeast Runoff

Summary for Pond 3P: Southeast Culvert

 Inflow Area =
 14.120 ac, 20.18% Impervious, Inflow Depth =
 5.31" for 25-Yr, 24-Hr event

 Inflow =
 77.94 cfs @
 12.11 hrs, Volume=
 6.251 af

 Outflow =
 77.94 cfs @
 12.11 hrs, Volume=
 6.251 af, Atten= 0%, Lag= 0.0 min

 Primary =
 77.94 cfs @
 12.11 hrs, Volume=
 6.251 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-46.00 hrs, dt= 0.05 hrs Peak Elev= 1,228.65' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,185.06'	24.0" Round Culvert L= 65.0' Ke= 0.900 Inlet / Outlet Invert= 1,185.06' / 1,184.73' S= 0.0051 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=77.46 cfs @ 12.11 hrs HW=1,228.14' (Free Discharge) **1=Culvert** (Inlet Controls 77.46 cfs @ 24.66 fps)

Pond 3P: Southeast Culvert

Summary for Pond 4P: West Culvert

 Inflow Area =
 9.289 ac, 50.27% Impervious, Inflow Depth =
 5.43" for 25-Yr, 24-Hr event

 Inflow =
 64.29 cfs @
 12.02 hrs, Volume=
 4.202 af

 Outflow =
 64.29 cfs @
 12.02 hrs, Volume=
 4.202 af, Atten= 0%, Lag= 0.0 min

 Primary =
 64.29 cfs @
 12.02 hrs, Volume=
 4.202 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-46.00 hrs, dt= 0.05 hrs Peak Elev= 1,215.09' @ 12.02 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	1,185.21'	24.0" Round Culvert L= 64.0' Ke= 0.900 Inlet / Outlet Invert= 1,185.21' / 1,184.89' S= 0.0050 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=62.89 cfs @ 12.02 hrs HW=1,213.94' (Free Discharge) -1=Culvert (Inlet Controls 62.89 cfs @ 20.02 fps)

Pond 4P: West Culvert

Project Description		
Friction Mothod	Manning	
Friction Method	Formula	
Solve For	Full Flow	
	Capacity	
Input Data		
Roughness Coefficient	0.010	
Channel Slope	0.005 π/π	
Normal Depth	24.0 IN	
Diameter	24.0 III 20.70 cfc	
Discillarge	20.79 CIS	
Results		
Discharge	20.79 cfs	
Normal Depth	24.0 in	
Flow Area	3.1 ft ²	
Wetted Perimeter	6.3 ft	
Hydraulic Radius	6.0 in	
Top Width	0.00 ft	
Critical Depth	19.6 in	
Percent Full	100.0 %	
Critical Slope	0.005 ft/ft	
Velocity	6.62 ft/s	
Velocity Head	0.68 ft	
Specific Energy	2.68 ft	
Froude Number	(N/A)	
Maximum Discharge	22.37 cfs	
Discharge Full	20.79 cfs	
Slope Full	0.005 ft/ft	
Flow Type	Undefined	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Unstream Denth	0.0 in	
Profile Description	N/Δ	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	0.0 %	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	24.0 in	
Critical Depth	19.6 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.005 ft/ft	
	Bentley System	s, Inc. Haestad Methods Solution

Worksheet For Single 24" HDPE (Southeast)

Culvert Capacity Check.fm8 9/20/2021 Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Project Description			
Friction Method	Manning		
Fliction Method	Formula		
Solve For	Full Flow		
	Capacity		
Input Data			
Roughness Coefficient	0.010		
Channel Slope	0.015 ft/ft		
Normal Depth	24.0 in		
Diameter	24.0 in		
Discharge	36.02 cfs		
Results			
Discharge	36.02 cfs		
Normal Depth	24.0 in		
Flow Area	3.1 ft ²		
Wetted Perimeter	6.3 ft		
Hydraulic Radius	6.0 in		
Top Width	0.00 ft		
Critical Depth	23.1 in		
Percent Full	100.0 %		
Critical Slope	0.013 ft/ft		
Velocity	11.46 ft/s		
Velocity Head	2.04 ft		
Specific Energy	4.04 ft		
Froude Number	(N/A)		
Maximum Discharge	38.74 cfs		
Discharge Full	36.02 cfs		
Slope Full	0.015 ft/ft		
Flow Type	Undefined		
GVF Input Data			
Downstream Depth	0.0 in		
Lenath	0.0 ft		
Number Of Steps	0		
Upstream Depth	0.0 in		
	N/A		
Profile Headloss	0.00 ft		
Average End Depth Over Rise	0.0 %		
Normal Depth Over Rise	100.0 %		
Downstream Velocity	Infinity ft/s		
Upstream Velocity	Infinity ft/s		
Normal Depth	24.0 in		
Critical Depth	23.1 in		
Channel Slope	0.015 ft/ft		
Critical Slope	0.013 ft/ft		
Culvert Capacity Check.fm8	Bentley Systems	, Inc. Haestad Methods Solution Center	Ŀ

Worksheet For Single 24" HDPE (West)

Culvert Capacity Check.fm8 9/20/2021

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

^{9/24/2021 \\}bmcd\dfs\Clients\ENR\WestarEnr\108337_JECFlyAshLF\Design\Civil\Dsgn\Landfill\RORO_Control System\Sketches\SK-003.dgn

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
23.580	80	>75% Grass cover, Good, HSG D (C, D)
15.648	94	Fallow, bare soil, HSG D (A, B)
0.241	91	Gravel roads, HSG D (A, B)
7.520	98	Paved roads w/curbs & sewers, HSG D (A, B)
2.720	93	Paved roads w/open ditches, 50% imp, HSG D (C, D)
49.709	88	TOTAL AREA

Jeffrey Fly Ash Landfill HydroCAD Design- Channe Type II 24-hr 25-Yr, 24-Hr Rainfall=5.90"Prepared by Burns and McDonnellPrinted 9/20/2021HydroCAD® 10.10-5a s/n 11687 © 2020 HydroCAD Software Solutions LLCPage 7

Time span=1.00-46.00 hrs, dt=0.05 hrs, 901 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment A: West Runoff	Runoff Area=9.289 ac 50.27% Impervious Runoff Depth=5.43" Flow Length=2,214' Tc=11.3 min CN=96 Runoff=64.29 cfs 4.202 af
Subcatchment B: Southeast Runoff	Runoff Area=14.120 ac 20.18% Impervious Runoff Depth=5.31" Flow Length=1,873' Tc=13.4 min CN=95 Runoff=91.54 cfs 6.251 af
Subcatchment C: North Runon	Runoff Area=3.770 ac 23.61% Impervious Runoff Depth=4.31" Flow Length=1,609' Tc=27.1 min CN=86 Runoff=14.83 cfs 1.355 af
Subcatchment D: East Runon	Runoff Area=22.530 ac 2.09% Impervious Runoff Depth=3.79" Flow Length=6,936' Tc=33.9 min CN=81 Runoff=68.25 cfs 7.121 af
Link 1L: West Interior Ditch	Inflow=64.29 cfs 4.202 af Primary=64.29 cfs 4.202 af
Link 2L: Southeast Interior Ditch	Inflow=91.54 cfs 6.251 af Primary=91.54 cfs 6.251 af
Link 3L: North Exterior Ditch	Inflow=14.83 cfs 1.355 af Primary=14.83 cfs 1.355 af
Link 4L: East Exterior Ditch	Inflow=68.25 cfs 7.121 af Primary=68.25 cfs 7.121 af
Total Pupoff Area = 49.7	'09 ac Bunoff Volume = 18 929 af Average Bunoff Depth = 4 57"

Total Runoff Area = 49.709 acRunoff Volume = 18.929 afAverage Runoff Depth = 4.57"82.14% Pervious = 40.829 ac17.86% Impervious = 8.880 ac

Subcatchment A: West Runoff

Summary for Subcatchment B: Southeast Runoff

Runoff = 77.94 cfs @ 12.11 hrs, Volume= 6.251 af, Depth= 5.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-46.00 hrs, dt= 0.05 hrs Type II 24-hr 25-Yr, 24-Hr Rainfall=5.90"

Area ((ac) C	N Des	cription			
0.0	0.091 91 Gravel roads, HSG D					
11.1	11.179 94 Fallow, bare soil, HSG D					
2.8	850 g	8 Pave	ed roads w	/curbs & se	ewers, HSG D	
14.1	120 9	5 Wei	ghted Aver	age		
11.2	270	79.8	2% Pervio	us Area		
2.8	850	20.1	8% Imperv	∕ious Area		
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
2.9	254	0.0050	1.44	7.38	Trap/Vee/Rect Channel Flow,	
					Bot.W=8.00' D=0.50' Z= 6.0 & 3.0 '/' Top.W=12.50'	
					n= 0.040 Riprap, 12-inch	
0.6	144	0.0460	4.26	23.41	Trap/Vee/Rect Channel Flow,	
					Bot.W=8.00' D=0.50' Z= 6.0 '/' Top.W=14.00'	
4.0			4.00		n= 0.040 Riprap, 12-inch	
1.2	302	0.0450	4.28	22.49	Irap/Vee/Rect Channel Flow,	
					Bot.W=8.00° D=0.50° Z= 5.0 °/° Top.W=13.00°	
4.0	440	0.0050	4.40	7.00	n= 0.040 Riprap, 12-inch	
4.8	418	0.0050	1.40	7.28		
					D01.00 - 0.00 D - 0.30 Z - 4.0 / 10p.00 - 12.00	
2.2	220	0 0020	1 1 1	5 91	TranVec/Post Channel Flow	
5.5	220	0.0030	1.11	5.61	Bot $W=8.00'$ D=0.50' Z= 6.0.8.4.0.1'' Top $W=13.00'$	
					D = 0.040 Riprap 12-inch	
02	65	0 0050	5 52	17 33	Pine Channel	
0.2	00	0.0000	0.02	17.00	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'	
					n= 0.012 Corrugated PP smooth interior	
61	470	0 8000	1 29	1 29	Trap/Vee/Rect Channel Flow.	
0.1		0.0000	1.20	1120	Bot W=0.00' D=0.50' Z= 4.0 '/' Top W=4.00'	
	n= 0.400					
19.1	1,873	Total				

Subcatchment B: Southeast Runoff

Summary for Subcatchment C: North Runon

Runoff = 14.83 cfs @ 12.20 hrs, Volume= 1.355 af, Depth= 4.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-46.00 hrs, dt= 0.05 hrs Type II 24-hr 25-Yr, 24-Hr Rainfall=5.90"

_	Area	(ac) C	N Dese	cription		
	1.780 93 Paved roads w/open ditches, 50% imp, HSG D					
_	1.990 80 >75% Grass cover, Good, HSG D					
	3.	770 8	36 Weig	ghted Aver	age	
	2.	880	76.3	9% Pervio	us Area	
	0.	890	23.6	1% Imperv	∕ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	21.9	331	0.0150	0.25	1.26	Trap/Vee/Rect Channel Flow,
						Bot.W=8.00' D=0.50' Z= 4.0 '/' Top.W=12.00'
						n= 0.400
	1.6	374	0.0350	3.85	19.25	Trap/Vee/Rect Channel Flow,
						Bot.W=8.00' D=0.50' Z= 4.0 '/' Top.W=12.00'
	0.5	500	0 0000	0.57	47.00	
	2.5	536	0.0300	3.57	17.83	Irap/vee/Rect Channel Flow,
						Bot.W=8.00° D=0.50° Z= 4.0 7° Top.W=12.00°
	1 1	260	0 0000	E 00	20.11	n= 0.040 Tron/Voc/Poot Channel Flow
	1.1	300	0.0000	0.0Z	29.11	Hap/vee/Rect Channel Flow,
						D = 0.040
_	27.4	1 600	Total			
	ZI.	1,009	iUlai			

Subcatchment C: North Runon

Summary for Subcatchment D: East Runon

Runoff = 68.25 cfs @ 12.29 hrs, Volume= 7.121 af, Depth= 3.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-46.00 hrs, dt= 0.05 hrs Type II 24-hr 25-Yr, 24-Hr Rainfall=5.90"

Area (Area (ac) CN Description				
0.940 93 Paved roads w/open ditches, 50% imp, HSG D					
21.	21.590 80 >75% Grass cover, Good, HSG D				
22.	530 8	1 Weig	ghted Aver	age	
22.	060	97.9	1% Pervio	us Area	
0.4	470	2.09	% Impervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.1	1,047	0.0030	1.72	4.73	Trap/Vee/Rect Channel Flow,
					Bot.W=4.00' D=0.50' Z= 3.0 '/' Top.W=7.00'
					n= 0.025 Earth, grassed & winding
16.6	4,433	0.0200	4.44	12.21	Trap/Vee/Rect Channel Flow,
					Bot.W=4.00' D=0.50' Z= 3.0 '/' Top.W=7.00'
					n= 0.025 Earth, grassed & winding
1.1	146	0.0050	2.22	6.11	Trap/Vee/Rect Channel Flow,
					Bot.W=4.00' D=0.50' Z= 3.0 '/' Top.W=7.00'
	405	0 0075	0.00	04.00	n= 0.025 Earth, grassed & winding
1.1	435	0.0375	6.38	31.89	Irap/vee/Rect Channel Flow,
					Bot.W=8.00° D=0.50° Z= 4.0 7° 10p.W=12.00°
0.2	167	0 0700	0 71	10 57	n= 0.025 Earth, grassed & winding
0.5	107	0.0700	0.71	43.57	Hap/vee/Rect Channel Flow,
					D0.00 = 0.00 D = 0.00 Z = 4.0 / 10p.00 = 12.00
1 /	232	0 0340	2 77		Shallow Concentrated Flow
1.7	202	0.0040	2.11		Grassed Waterway Ky= 15.0 fps
33	476	0 0250	2 37		Shallow Concentrated Flow
0.0	770	0.0200	2.07		Grassed Waterway Ky= 15.0 fps
		— · · ·			

33.9 6,936 Total

Subcatchment D: East Runon

Exterior Ditch-Nor	th
---------------------------	----

Project Description		
Friction Method	Manning	
Solvo For	Formula	
Solve Fol	Discharge	
Input Data		
Roughness Coefficient	0.078	
Channel Slope	0.003 ft/ft	
Normal Depth	48.0 in	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	8.00 ft	
Results		
Discharge	176 67 cfs	
Flow Area	96.0 ft ²	
Wetted Perimeter	41.0 ft	
Hydraulic Radius	28.1 in	
Top Width	40.00 ft	
Critical Depth	21.9 in	
Critical Slope	0.085 ft/ft	
Velocity	1.84 ft/s	
Velocity Head	0.05 ft	
Specific Energy	4.05 ft	
Froude Number	0.209	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	, 0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	48.0 in	
Critical Depth	21.9 in	
Channel Slope	0.003 ft/ft	
Critical Slope	0.085 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Project Description		
Fuisting Mathead	Manning	
Friction Method	Formula	
Solve For	Discharge	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.020 ft/ft	
Normal Depth	48.0 in	
Left Side Slope	3.000 H:V	
Right Side Slope	3.000 H:V	
Bottom Width	4.00 ft	
Results		
Discharge	754 74 cfs	
Flow Area	64 በ ft ²	
Wetted Perimeter	29.3 ft	
Hydraulic Radius	26.2 in	
Top Width	28.00 ft	
Critical Depth	55.4 in	
Critical Slope	0.010 ft/ft	
Velocity	11.79 ft/s	
Velocity Head	2.16 ft	
Specific Energy	6.16 ft	
Froude Number	1.375	
Flow Type	Supercritical	
GVF Input Data		
 Downstream Denth	0.0 in	
l ength	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Unstroom Donth	0.0 in	
Profile Description	0.0 III NI/A	
Profile Headloss		
Downstream Velocity	U.UU IL Infinity ft/c	
	Inilially It/S	
Normal Depth	48 0 in	
Critical Depth		
Channel Slone	22.4 III 0 020 #/#	
Critical Slope	0.020 IL/IL 0.010 ft/ft	
Cilical Slope	υ.υτυ π/π	

Exterior Ditch-East

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Discharge	
Input Data		
Roughness Coefficient	0.078	
Channel Slope	0.030 ft/ft	
Normal Depth	48.0 in	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	8.00 ft	
Results		
Discharge	558.68 cfs	
Flow Area	96.0 ft ²	
Wetted Perimeter	41.0 ft	
Hydraulic Radius	28.1 in	
Top Width	40.00 ft	
Critical Depth	39.4 in	
Critical Slope	0.072 ft/ft	
Velocity	5.82 ft/s	
Velocity Head	0.53 ft	
Specific Energy	4.53 ft	
Froude Number	0.662	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	(N/A) ft/s	
Upstream Velocity	(N/A) ft/s	
Normal Depth	48.0 in	
Critical Depth	39.4 in	
Channel Slope	0.030 ft/ft	
Critical Slope	0.072 ft/ft	

Project Description		
Eriction Method	Manning	
Theorem Method	Formula	
Solve For	Discharge	
Input Data		
Roughness Coefficient	0.078	
Channel Slope	0.015 ft/ft	
Normal Depth	48.0 in	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	8.00 ft	
Results		
Discharge	395.05 cfs	
Flow Area	96.0 ft ²	
Wetted Perimeter	41.0 ft	
Hydraulic Radius	28.1 in	
Top Width	40.00 ft	
Critical Depth	33.2 in	
Critical Slope	0.076 ft/ft	
Velocity	4.12 ft/s	
Velocity Head	0.26 ft	
Specific Energy	4.26 ft	
Froude Number	0.468	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	(N/A) ft/s	
Upstream Velocity	(N/A) ft/s	
Normal Depth	48.0 in	
Critical Depth	33.2 in	
Channel Slope	0.015 ft/ft	
Critical Slope	0.076 ft/ft	

Perimeter Ditch-Southeast

CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 **O** 816-333-9400 **F** 816-333-3690 www.burnsmcd.com