2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

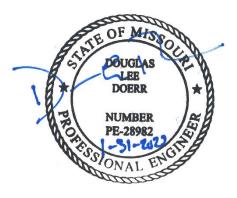
CCR LANDFILL
MONTROSE GENERATING STATION
CLINTON, MISSOURI

Presented To: Evergy Metro, Inc.

SCS ENGINEERS

27213168.22 | January 2023 8575 W 110th Street, Suite 100 Overland Park, Kansas 66210 913-681-0030

CERTIFICATIONS


I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify that the 2022 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Montrose Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify that the 2022 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Montrose Generating Station was prepared by me or under my direct supervision and fulfills the requirements of 40 CFR 257.90(e).

Douglas L. Doerr, P.E.

SCS Engineers

2022 Groundwater Monitoring and Corrective Action Report

Revision Number	Revision Date	Revision Sections	Summary of Revisions
0	January 31, 2023	NA	Original

Table of Contents

Sec	lion		Paç	је				
CERT	IFICA	TIONS.		i				
1	INTR	ODUCT	TON	1				
	1.1	§ 257	7.90(e)(6) Summary	1				
		1.1.1	§ 257.90(e)(6)(i) Initial Monitoring Program	1				
		1.1.2	§ 257.90(e)(6)(ii) Final Monitoring Program	1				
		1.1.3	§ 257.90(e)(6)(iii) Statistically Significant Increases	1				
		1.1.4	§ 257.90(e)(6)(iv) Statistically Significant Levels	2				
		1.1.5	§ 257.90(e)(6)(v) Selection of Remedy	2				
		1.1.6	§ 257.90(e)(6)(vi) Remedial Activities	2				
2	§ 25	7.90(e) ANNUAL REPORT REQUIREMENTS	2				
	2.1	§ 257	7.90(e)(1) Site Map	3				
	2.2	§ 257	7.90(e)(2) Monitoring System Changes	3				
	2.3	§ 257	7.90(e)(3) Summary of Sampling Events	3				
	2.4	§ 257	90(e)(4) Monitoring Transition Narrative					
	2.5	§ 257	7.90(e)(5) Other Requirements	4				
		2.5.1	§ 257.90(e) Program Status	4				
		2.5.2	§ 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency	5				
		2.5.3	§ 257.94(e)(2) Detection Monitoring Alternate Source Demonstration	5				
		2.5.4	§ 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequence	•				
		2.5.5	§ 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards	6				
		2.5.6	§ 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration	6				
		2.5.7	§ 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures	6				
	2.6	§ 257	7.90(e)(6) Overview Summary	7				
3	SUPF	-	NTAL INFORMATION AND DATA					
4			OMMENTS					
aqA	endid	ces						
• •	ndix A		gures					
Appe								
	_		Site Map					
	_		Potentiometric Surface Map (May 2022)					
	Fig	ure 3:	Potentiometric Surface Map (November 2022)					
Appe	ndix E		ables					
	Tal	ole 1: /	Appendix III Detection Monitoring Results					
	Tal	ole 2:	Detection Monitoring Field Measurements					
Appe	ndix (C AI	ternative Source Demonstrations					
	C.1	N	CR Landfill Groundwater Monitoring Alternative Source Demonstration Report ovember 2021 Groundwater Monitoring Event, CCR Landfill, Montrose Generating tation (May 2022).	S				

2022 Groundwater Monitoring and Corrective Action Report

- C.2 CCR Groundwater Monitoring Alternative Source Demonstration Report May 2022 Groundwater Monitoring Event, CCR Landfill, Sibley Generating Station (December 2022).
- **Appendix D** Laboratory Analytical Reports
- **Appendix E** Statistical Analyses
 - E.1 Fall 2021 Semiannual Detection Monitoring Statistical Analyses
 - E.2 Spring 2022 Semiannual Detection Monitoring Statistical Analyses

1 INTRODUCTION

This 2022 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" (Rule) published by the United States Environmental Protection Agency (USEPA) in the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, dated April 17, 2015 (USEPA, 2015), and subsequent revisions. Specifically, this report was prepared for Evergy Metro, Inc. (Evergy) to fulfill the requirements of 40 CFR 257.90 (e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2022 Annual Groundwater Monitoring and Corrective Action Report for the CCR Landfill at the Montrose Generating Station.

1.1 § 257.90(e)(6) SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:

1.1.1 § 257.90(e)(6)(i) Initial Monitoring Program

At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the start of the current annual reporting period, (January 1, 2022), the CCR Landfill was operating under a detection monitoring program in compliance with § 257.94.

1.1.2 § 257.90(e)(6)(ii) Final Monitoring Program

At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

At the end of the current annual reporting period, (December 31, 2022), the CCR Landfill was operating under a detection monitoring program in compliance with § 257.94.

1.1.3 § 257.90(e)(6)(iii) Statistically Significant Increases

If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to § 257.94(e):

(A) Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and

Monitoring Event	Monitoring Well	Constituent	ASD
Fall 2021	MW-604	Chloride	Successful
Spring 2022	MW-604	Chloride	Successful
Spring 2022	MW-605	Calcium	Successful

(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.

Not applicable because an assessment monitoring program was not initiated.

1.1.4 § 257.90(e)(6)(iv) Statistically Significant Levels

If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to § 257.95(g) include all of the following:

(A) Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;

Not applicable because there was no assessment monitoring conducted.

(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.

Not applicable because there was no assessment of corrective measures initiated for the CCR Unit.

1.1.5 § 257.90(e)(6)(v) Selection of Remedy

Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and

Not applicable because corrective measures are not required.

1.1.6 § 257.90(e)(6)(vi) Remedial Activities

Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

Not applicable because corrective measures are not required.

2 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action

report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.1 § 257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A site map with an aerial image showing the CCR Landfill and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR Landfill groundwater monitoring program is provided as **Figure 1** in **Appendix A**.

2.2 § 257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the CCR groundwater monitoring program for the CCR Landfill in 2022.

2.3 § 257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under § 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Only detection monitoring was required to be conducted during the reporting period (2022). Samples collected in 2022 were collected and analyzed for Appendix III detection monitoring constituents. Results of the sampling events are provided in **Appendix B**, **Table 1** (Appendix III Detection Monitoring Results), and **Table 2** (Detection Monitoring Field Measurements). These tables include the Fall 2021 semiannual detection monitoring event verification sample data collected and analyzed in 2022; the Spring 2022 semiannual detection monitoring data, and verification sample data; and, the Fall 2022 semiannual detection monitoring data. The dates of sample collection and the monitoring program requiring the sample are also provided in these tables.

2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

There was no transition between monitoring programs in 2022. Only detection monitoring was conducted in 2022.

2.5 § 257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in § 257.90 through 257.98.

A summary of potentially required information and the corresponding section of the Rule is provided in the following sections. In addition, the information, if applicable, is provided.

2.5.1 § 257.90(e) Program Status

Status of Groundwater Monitoring and Corrective Action Program.

The groundwater monitoring and corrective action program is in detection monitoring.

Summary of Key Actions Completed.

- a. completion of the Fall 2021 verification sampling and analyses per the certified statistical method.
- b. completion of the statistical evaluation of the Fall 2021 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- c. completion of the 2021 Annual Groundwater Monitoring and Corrective Action Report,
- d. completion of a successful alternative source demonstration for the Fall 2021 semiannual detection monitoring sampling and analysis event,
- e. completion of the Spring 2022 semiannual detection monitoring sampling and analysis event with subsequent verification sampling per the certified statistical method,
- f. completion of the statistical evaluation of the Spring 2022 semiannual detection monitoring sampling and analysis event per the certified statistical method,
- g. initiation of the Fall 2022 semiannual detection monitoring sampling and analysis event, and
- h. . completion of a successful alternative source demonstration for the Spring 2022 semiannual detection monitoring sampling and analysis event.

2022 Groundwater Monitoring and Corrective Action Report

Description of Any Problems Encountered.

No noteworthy problems were encountered.

Discussion of Actions to Resolve the Problems.

Not applicable because no noteworthy problems were encountered.

Projection of Key Activities for the Upcoming Year (2023).

Completion of verification sampling and data analysis, and the statistical evaluation of Fall 2022 detection monitoring sampling and analysis event, and, if required, alternative source demonstration(s). Semiannual Spring and Fall 2023 groundwater sampling and analysis. Completion of the statistical evaluation of the Spring 2023 detection monitoring sampling and analysis event, and, if required, alternative source demonstration(s).

2.5.2 § 257.94(d)(3) Demonstration for Alternative Detection Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by $\S 257.90(e)$.

Not applicable because no alternative monitoring frequency for detection monitoring and certification was pursued.

2.5.3 § 257.94(e)(2) Detection Monitoring Alternate Source Demonstration

Demonstration that a source other than the CCR unit caused the statistically significant increase (SSI) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. In addition, certification of the demonstration is to be included in the annual report.

The following demonstration reports are included as **Appendix C**:

- C.1 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report November 2021 Groundwater Monitoring Event, CCR Landfill, Montrose Generating Station (May 2022).
- C.2 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report May 2022 Groundwater Monitoring Event, CCR Landfill, Montrose Generating Station (December 2022).

2.5.4 § 257.95(c)(3) Demonstration for Alternative Assessment Monitoring Frequency

The owner or operator must obtain a certification from a qualified professional engineer or approval from the Participating State Director or approval from EPA where EPA is the permitting authority stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of this section. The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer or the approval from the Participating State Director or the approval from EPA where EPA is the permitting authority in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable because there was no assessment monitoring conducted.

2.5.5 § 257.95(d)(3) Assessment Monitoring Concentrations and Groundwater Protection Standards

Include the concentrations of Appendix III and detected Appendix IV constituents from the assessment monitoring, the established background concentrations, and the established groundwater protection standards.

Not applicable because there was no assessment monitoring conducted.

2.5.6 § 257.95(g)(3)(ii) Assessment Monitoring Alternate Source Demonstration

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this section, and may return to detection monitoring if the constituents in appendices III and IV to this part are at or below background as specified in paragraph (e) of this section. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

2.5.7 § 257.96(a) Demonstration for Additional Time for Assessment of Corrective Measures

Within 90 days of finding that any constituent listed in appendix IV to this part has been detected at a statistically significant level exceeding the groundwater protection standard defined under § 257.95(h), or immediately upon detection of a release from a CCR unit, the owner or operator must initiate an assessment of corrective measures to prevent further releases, to remediate any releases and to restore affected area to original conditions. The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measures due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that

the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for no longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer or the approval from the Participating State Director or approval from EPA where EPA is the permitting authority.

Not applicable because there was no assessment monitoring conducted.

2.6 § 257.90(E)(6) OVERVIEW SUMMARY

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

§ 257.90(e)(6) is addressed in Section 1.1 of this report.

3 SUPPLEMENTAL INFORMATION AND DATA

In addition to the requirements listed in 40 CFR 257.90(e), supplemental information has been included in this section in recognition of comments received by Evergy from the USEPA on January 11, 2022. The USEPA indicated in their comments that the GWMCA Report contain the following:

- Results of laboratory analysis of groundwater or other environmental media samples for 40 CFR 257 Appendix III and Appendix IV constituents or other constituents, such as those supporting characterization of site conditions that may ultimately affect a remedy.
- Required statistical analysis performed on laboratory analysis results; and
- Calculated groundwater flow rate and direction.

This information is not specifically referred to in 40 CFR 257.90(e) for inclusion in the GWMCA Reports; however, it is routinely collected, determined and maintained in Evergy's files and is being provided with in this GWMCA report. This supplemental information and data are provided as specified below:

Laboratory Analytical Reports (Appendix D):

Includes laboratory data packages with supporting information such as case narrative, sample and method summary, analytical results, quality control, and chain-of-custody documentation. The laboratory data packages for the following sampling events are provided:

- January 2022 First verification sampling for the Fall 2021 detection monitoring event.
- March 2022 Second verification sampling for the Fall 2021 detection monitoring event.
- o May 2022 Spring 2022 semiannual detection monitoring sampling event.
- July 2022 First verification sampling for the Spring 2022 detection monitoring sampling event.
- August 2022 Second verification sampling for Spring 2022 detection monitoring sampling event.
- November 2022 Fall 2022 semiannual detection monitoring sampling event.

Statistical Analyses (Appendix E):

Includes summary of statistical results, prediction limit plots, prediction limit background data, detection sample results, first and second verification re-sample results (when applicable), extra sample results for pH (collected as part of the approved sampling procedures), input parameters, and a Prediction Limit summary table. Statistical analyses completed in 2022 included the following:

- o Fall 2021 semiannual detection monitoring statistical analyses.
- Spring 2022 semiannual detection monitoring statistical analyses.
- Groundwater Potentiometric Surface Maps (Appendix A):

Includes revised groundwater potentiometric surface maps with the measured groundwater elevations at each well and the generalized groundwater flow direction and the calculated groundwater flow rate. Maps for the following sampling events are provided:

- o Figure 2 Spring 2022 semiannual detection monitoring sampling event.
- o Figure 3 Fall 2022 semiannual detection monitoring sampling event.

4 GENERAL COMMENTS

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. The information contained in this report is a reflection of the conditions encountered at the Montrose Generating Station at the time of fieldwork. This report includes a review and compilation of the required information and does not reflect any variations of the subsurface, which may occur between sampling locations. Actual subsurface conditions may vary and the extent of such variations may not become evident without further investigation.

Conclusions drawn by others from the result of this work should recognize the limitation of the methods used. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the Montrose Generating Station CCR Landfill. No warranties, express or implied, are intended or made.

APPENDIX A

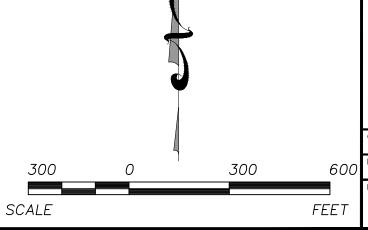
FIGURES

Figure 1: Site Map

Figure 2: Potentiometric Surface Map (May 2022)

Figure 3: Potentiometric Surface Map (November 2022)

LEGEND:

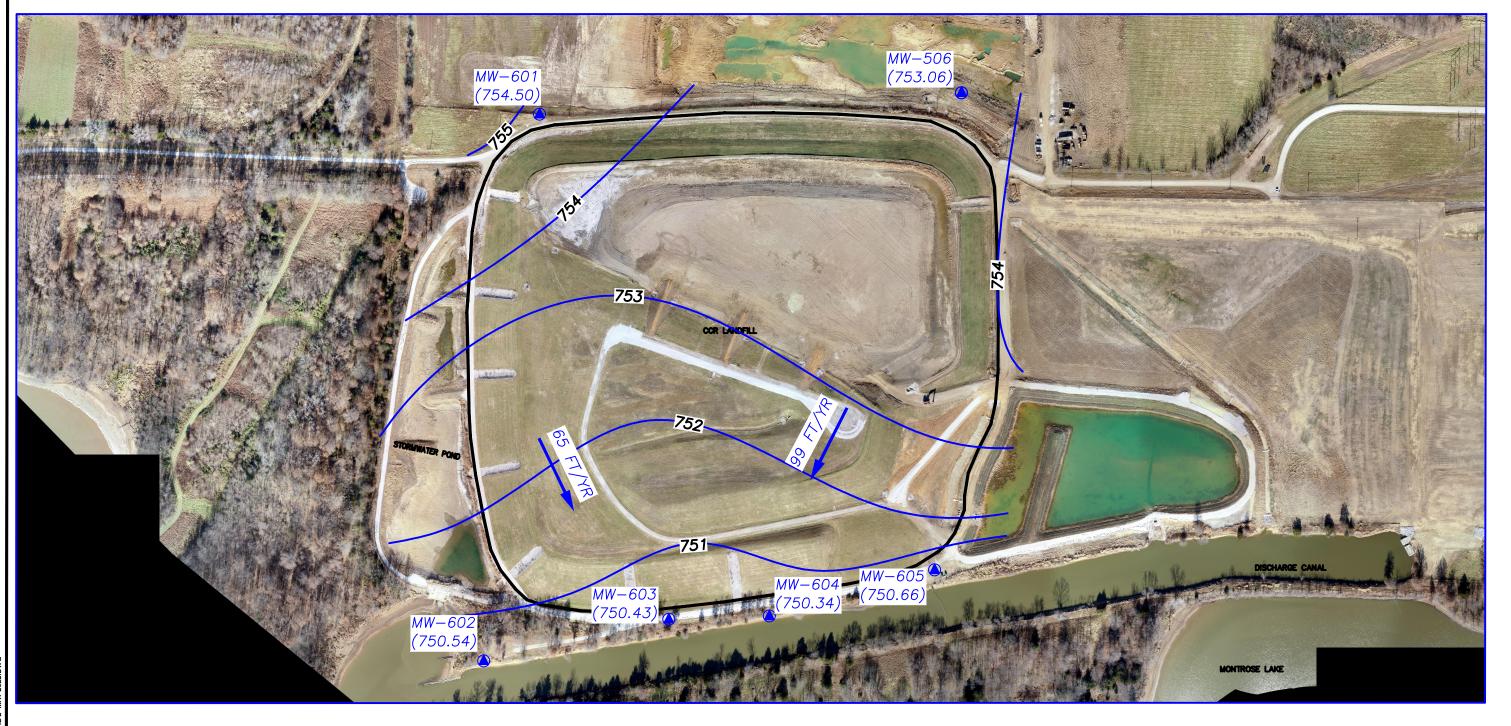

CCR LANDFILL UNIT BOUNDARY (APPROXIMATE)

MW−506 (747.77)

CCR GROUNDWATER MONITORING WELL SYSTEM (GROUNDWATER ELEVATION)

NOTES:

- 1. HORIZONTAL DATUM: MISSOURI STATE PLANE COORDINATE SYSTEM, WEST ZONE (NAD 83)
- VERTICAL DATUM: NAVD 88
- DRONE IMAGE BY EVERGY, DATED DECEMBER 3, 2021.
- APPROXIMATE BOUNDARY LOCATIONS PROVIDED BY AECOM.
- MONITOR WELL LOCATIONS PROVIDED BY SHAFFER, KLINE, & WARREN SURVEY DATED JULY 21, 2017.


CCR CANDFILL
CCR GROUNDWATER MONITORING SYSTEM
PROJECT THE
2022 GROUNDWATER MONITORING AND
CORRECTIVE ACTION REPORT

EVERGY METRO, INC.
MONTROSE GENERATING STATION
MONTROSE, MISSOURI

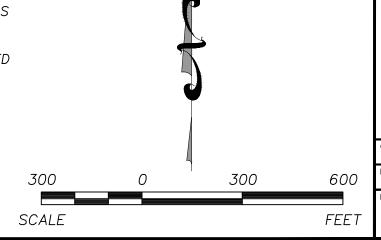
SCS ENGINEERS
ENVIRONMENTAL CONSULTANTS AND CO

CADD FILE: 27213168.20_MONTROSE 2022.0WG

DATE: 1/23/2023

LEGEND:

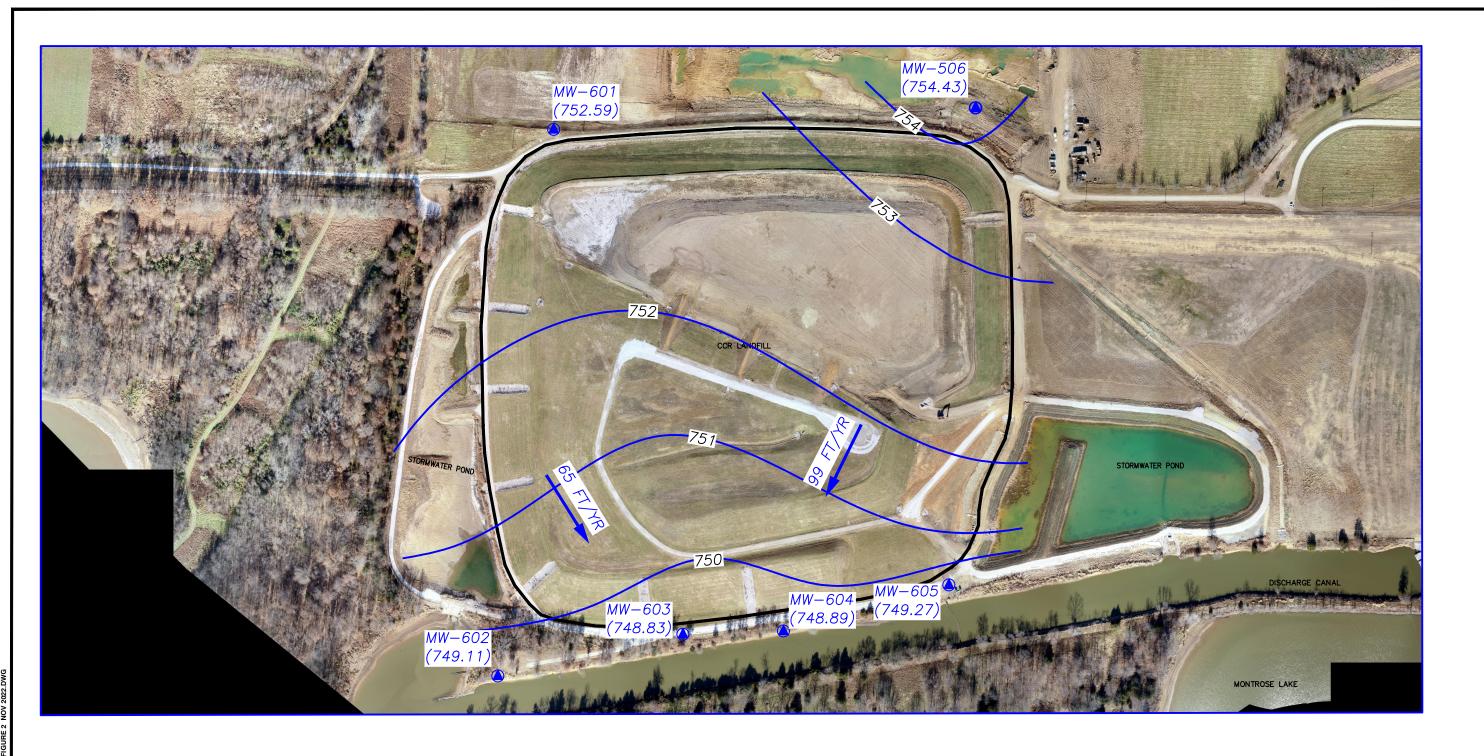
CCR LANDFILL UNIT BOUNDARY (APPROXIMATE)


(747.77)

CCR GROUNDWATER MONITORING WELL SYSTEM (GROUNDWATER ELEVATION)

GROUNDWATER FLOW DIRECTION AND CALCULATED GROUNDWATER FLOW RATE (FEET/YEAR)

NOTES:


- 1. HORIZONTAL DATUM: MISSOURI STATE PLANE COORDINATE SYSTEM, WEST ZONE (NAD 83)
- VERTICAL DATUM: NAVD 88
- DRONE IMAGE BY EVERGY, DATED DECEMBER 3, 2021.
- APPROXIMATE BOUNDARY LOCATIONS PROVIDED BY AECOM.
- MONITOR WELL LOCATIONS PROVIDED BY SHAFFER, KLINE, & WARREN SURVEY DATED JULY 21, 2017.
- WATER LEVEL MEASUREMENTS COMPLETED ON MAY 10, 2022

2022 GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT SURFACE MAP TITE POTENTIOMETRIC SURI (MAY 2022) CCR LANDFILL EVERGY METRO, INC.
MONTROSE GENERATING STATION
MONTROSE, MISSOURI

ENGINEERS ENTAL CONSULTANTS AND CO SCS |

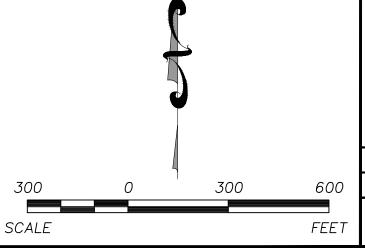
CADD FILE: 27213168.20_MONTROS 2022.DWG DATE: 1/23/2023

LEGEND:

CCR LANDFILL UNIT BOUNDARY (APPROXIMATE)

(747.77)

CCR GROUNDWATER MONITORING WELL SYSTEM (GROUNDWATER ELEVATION)


XX FT/YR

GROUNDWATER FLOW DIRECTION

AND CALCULATED GROUNDWATER FLOW RATE (FEET/YEAR)

NOTES:

- HORIZONTAL DATUM: MISSOURI STATE PLANE COORDINATE SYSTEM, WEST ZONE (NAD 83)
- VERTICAL DATUM: NAVD 88
- DRONE IMAGE BY EVERGY, DATED DECEMBER 3, 2021.
- APPROXIMATE BOUNDARY LOCATIONS PROVIDED BY AECOM.
- MONITOR WELL LOCATIONS PROVIDED BY SHAFFER, KLINE, & WARREN SURVEY DATED JULY 21, 2017.
- WATER LEVEL MEASUREMENTS COMPLETED ON NOVEMBER 8, 2022.

PROJECT ITTE
2022 GROUNDWATER MONITORING AND
CORRECTIVE ACTION REPORT

EVERGY METRO, INC.
MONTROSE GENERATING STATION
MONTROSE, MISSOURI

SCS ENGINEERS
ENVIRONMENTAL CONSULTANTS AND CO

CADD FILE: 27213168.20_MONTROSE 2022.DWG DATE: 1/23/2023

FIGURE NO.

APPENDIX B

TABLES

Table 1: Appendix III Detection Monitoring Results
Table 2: Detection Monitoring Field Measurements

Table 1 CCR Landfill

Appendix III Detection Monitoring Results Evergy Montrose Generating Station

		Appendix III Constituents									
Well Number	Sample Date	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	pH (S.U.)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)			
MW-506	5/10/2022	0.086 (J)	342	88.8	<0.128 (R)	5.21	1420	2800			
MW-506	7/13/2022				0.0844 (J)	**5.74					
MW-506	11/8/2022	0.0985 (J)	343	85.4	<0.320 (R)	5.37	1730	2260			
MW-601	5/10/2022	0.128 (J)	439	39.8	0.779 (J)	5.27	3160	4680			
MW-601	7/13/2022				*0.266	**5.54					
MW-601	11/8/2022	0.119 (J)	463	62.4	0.819 (J)	5.30	2910	4440			
MW-602	5/10/2022	4.05	302	4.22	0.120 (J)	5.68	1070	1680			
MW-602	7/13/2022				0.118 (J)	**5.97					
MW-602	11/8/2022	4.20	285	3.73 (B)	0.141 (J)	7.11	1120	1710			
MW-603	5/10/2022	5.23	366	7.23 (J)	0.912 (J)	5.04	1810	2430			
MW-603	7/13/2022			*6.64	*0.404	**4.61					
MW-603	11/8/2022	6.96	393	10.5 (B)	1.63	5.04	1930	2930			
MW-604	1/24/2022	*5.31		*18.8		**5.82					
MW-604	3/1/2022			*17.2		**5.77					
MW-604	5/10/2022	5.79	478	16.9	0.691 (J)	5.46	2000	1940			
MW-604	7/13/2022	*5.58		*17.4	*0.336	*5.82					
MW-604	8/16/2022	*5.14		*17.5		**5.72					
MW-604	11/8/2022	4.34	459	17.2 (B)	1.58	6.04	1840	2690			
MW-605	5/10/2022	5.76	482	16.3	0.765 (J)	5.36	2000	2010			
MW-605	7/13/2022	*1.54	*434		*0.160	*5.40					
MW-605	8/16/2022		*444			**5.34					
MW-605	11/8/2022	1.57	439	29.7 (B)	1.46 (J)	5.03	1740	2800			

^{*} Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

mg/L - miligrams per liter

- S.U. Standard Units
- --- Not Sampled
- (B) Based on the Stage II data quality review the sample result is potentially biased high due to analyte detection in the associated sampl
- (R) Laboratory Reported Detection Limit (RDL)
- (J) Reported concentration is below the method detection limit (MDL), however is above the RDL and is estimated.

^{**}Extra Sample for Quality Control Validation or per Standard Sampling Procedure

Table 2
CCR Landfill
Detection Monitoring Field Measurements
Evergy Montrose Generating Station

Well Number	Sample Date	pH (S.U.)	Specific Conductivity (µS)	Temperature (°C)	Turbidity (NTU)	ORP (mV)	DO (mg/L)	Water Level (ft btoc)	Groundwater Elevation (ft NGVD)
MW-506	5/10/2022	5.21	2990	16.21	6.1	170	0.00	8.51	753.06
MW-506	7/13/2022	**5.74	3120	18.36	0.0	170	0.00	7.86	753.71
MW-506	11/8/2022	5.37	3390	16.73	9.2	253	0.24	7.14	754.43
MW-601	5/10/2022	5.27	4560	18.10	48.7	193	0.64	10.61	754.50
MW-601	7/13/2022	**5.54	4540	18.40	20.4	197	1.96	11.71	753.40
MW-601	11/8/2022	5.30	4930	17.14	27.8	264	0.43	12.52	752.59
MW-602	5/10/2022	5.68	1860	19.77	66.5	59	0.00	5.32	750.54
MW-602	7/13/2022	**5.97	1920	21.11	25.3	39	0.00	7.10	748.76
MW-602	11/8/2022	7.11	2130	15.98	18.1	34	2.10	6.75	749.11
MW-603	5/10/2022	5.04	708	20.79	0.0	204	0.00	13.21	750.43
MW-603	7/13/2022	**4.61	3170	18.39	0.5	359	0.00	15.06	748.58
MW-603	11/8/2022	5.04	3400	16.19	0.0	246	3.74	14.81	748.83
MW-604	1/24/2022	**5.82	3240	16.43	0.0	166	0.00	15.25	748.14
MW-604	3/1/2022	**5.77	3550	16.43	0.0	139	0.00	14.00	749.39
MW-604	5/10/2022	5.46	3130	18.81	15.1	141	0.00	13.05	750.34
MW-604	7/13/2022	*5.82	3150	20.18	2.7	250	0.00	14.75	748.64
MW-604	8/16/2022	**5.72	3380	17.23	0.0	171	0.00	13.91	749.48
MW-604	11/8/2022	6.04	3420	16.72	6.4	190	0.33	14.50	748.89
MW-605	5/10/2022	5.36	3210	20.33	0.0	136	0.00	13.45	750.66
MW-605	7/13/2022	*5.40	3220	20.40	0.0	221	0.00	13.27	750.84
MW-605	8/16/2022	**5.34	3270	18.04	7.3	208	0.05	13.93	750.18
MW-605	11/8/2022	5.03	3190	16.96	0.0	192	0.00	14.84	749.27

^{*} Verification Sample obtained per certified statistical method and Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009.

S.U. - Standard Units

μS - microsiemens

°C - Degrees Celsius

ft btoc - Feet Below Top of Casing

ft NGVD - National Geodetic Vertical Datum (NAVD 88)

NTU - Nephelometric Turbidity Unit

^{**}Extra Sample for Quality Control Validation or per Standard Sampling Procedure

APPENDIX C

ALTERNATIVE SOURCE DEMONSTRATIONS

- C.1 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report November 2021 Groundwater Monitoring Event, CCR Landfill, Montrose Generating Station (May 2022)
- C.2 CCR Landfill Groundwater Monitoring Alternative Source Demonstration Report May 2022 Groundwater Monitoring Event, CCR Landfill, Montrose Generating Station (December 2022)

APPENDIX C.1 CCR Groundwater Monitoring Alternative Source Demonstration Report November 2021 Groundwater Monitoring Event, CCR Landfill, Montrose Generating Station (May 2022)

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT NOVEMBER 2021 GROUNDWATER MONITORING EVENT

CCR LANDFILL

Montrose Generating Station Evergy Metro, Inc. Clinton, Missouri


SCS ENGINEERS

May 2022 File No. 27213168.22

8575 W. 110th Suite 100 Overland Park, KS 66210 913-749-0700

CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Montrose Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Montrose Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E.

SCS Engineers

Table of Contents

Sec	ction		Page
CER	TIFICA	ATIONS	i
1	Reg	gulatory Framework	
2	Stat	tistical Results	
3	Alte	ernative Source Demonstration	2
	3.1	Box and Whiskers Plots	2
	3.2	Piper Diagram Plots	2
	3.3	Time Series Plots	3
4	Con	nclusion	3
5	Gen	neral Comments	

Appendices

Appendix A Box and Whiskers Plots

Appendix B Piper Diagram Plots and Analytical Results

Appendix C Time Series Plot

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Montrose Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on November 16, 2021. Review and validation of the results from the November 2021 Detection Monitoring Event was completed on January 6, 2022, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on January 24, 2022 and March 1, 2022.

The completed statistical evaluation identified one Appendix III constituent above its prediction limit established for monitoring well MW-604.

Monitoring Well Constituents	*UPL	Observation November 16, 2021	1st Verification January 24, 2022	2nd Verification March 1, 2022	
MW-604					
Chloride	15.28	16.3	18.8	17.2	

^{*}UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified an SSI above the background prediction limit for chloride at monitoring well MW-604.

1

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSI for the CCR Landfill at the Montrose Generating Station, there are multiple lines of supporting evidence to indicate the above SSI was not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

3.1 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

An SSI was identified in well MW-604 for chloride. Therefore, box and whiskers plots for chloride in MW-604 and the two upgradient wells MW-506 and MW-601 were prepared to allow comparison of the chloride concentrations between wells. The comparison between wells indicates the chloride concentrations in well MW-604 are within or below the range of chloride in upgradient wells. This demonstrates that a source other than the CCR Landfill caused the SSI in chloride over background levels, or that the SSI resulted from natural variation in groundwater quality. Box and whisker plots are provided in **Appendix A**.

3.2 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely-accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram generated for MW-604 and landfill leachate is provided in **Appendix B** along with the analytical results and indicates the groundwater from this well does not exhibit the same geochemical

characteristics as the leachate. The groundwater and the leachate plot in different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSI over background levels for chloride or that the SSI resulted from natural variation in groundwater quality.

3.3 TIME SERIES PLOTS

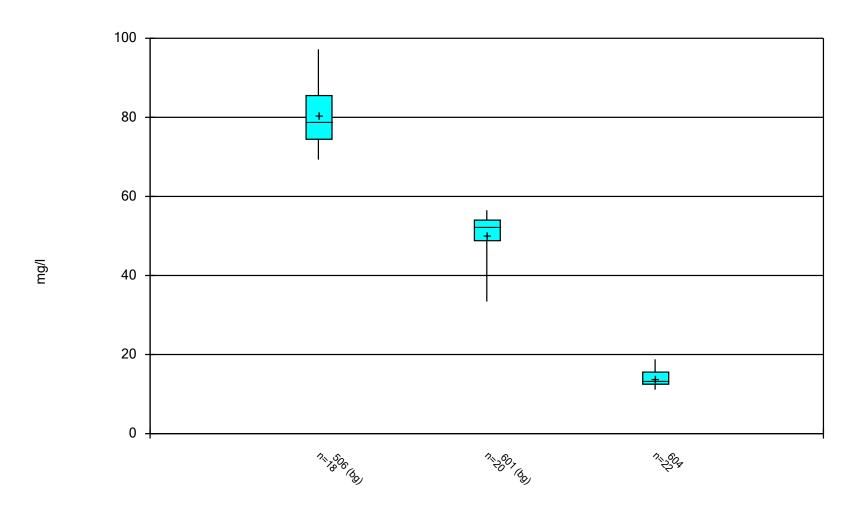
Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors. More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

Time series plots for the chloride concentrations in MW-604 were plotted along with the chloride concentrations for upgradient wells MW-506 and MW-601. The plots indicate the chloride concentrations in MW-604 are below the concentrations in MW-506 and are often below or very near the concentrations in MW-601. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

4 CONCLUSION

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.

5 GENERAL COMMENTS

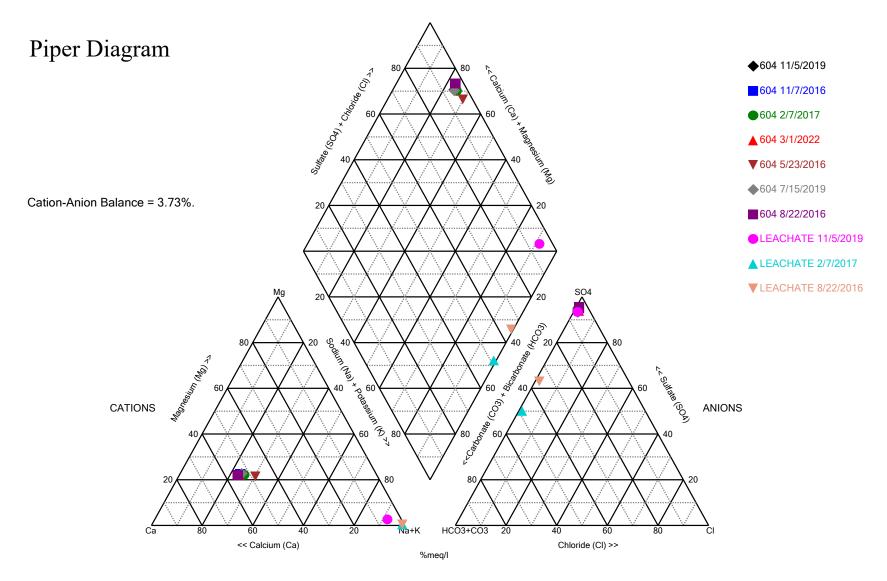

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the Montrose Generating Station. No warranties, express or implied, are intended or made.

The signatures of the certifying registered geologist and professional engineer on this document represent that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signatures. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

Box and Whiskers Plots

Box & Whiskers Plot


Constituent: Chloride Analysis Run 5/17/2022 2:22 PM View: LF CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Box & Whiskers Plot

Montrose Generating Station UWL			Client: SCS Engineers Data: Montrose Printed 5/17/2022, 2:24 PM						
<u>Well</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	%NDs	
506 (bg)	18	80.62	7.599	1.791	79	69.3	97.2	0	
601 (bg)	20	50.24	5.943	1.329	52.45	33.4	56.5	0	
604	22	13.96	1.963	0.4185	13.3	11.1	18.8	0	
	Well 506 (bg) 601 (bg)	Well N 506 (bg) 18 601 (bg) 20	Well N Mean 506 (bg) 18 80.62 601 (bg) 20 50.24	Well N Mean Std. Dev. 506 (bg) 18 80.62 7.599 601 (bg) 20 50.24 5.943	Well N Mean Std. Dev. Std. Err. 506 (bg) 18 80.62 7.599 1.791 601 (bg) 20 50.24 5.943 1.329	Well N Mean Std. Dev. Std. Err. Median 506 (bg) 18 80.62 7.599 1.791 79 601 (bg) 20 50.24 5.943 1.329 52.45	Well N Mean Std. Dev. Std. Err. Median Min. 506 (bg) 18 80.62 7.599 1.791 79 69.3 601 (bg) 20 50.24 5.943 1.329 52.45 33.4	Well N Mean Std. Dev. Std. Err. Median Min. Max. 506 (bg) 18 80.62 7.599 1.791 79 69.3 97.2 601 (bg) 20 50.24 5.943 1.329 52.45 33.4 56.5	

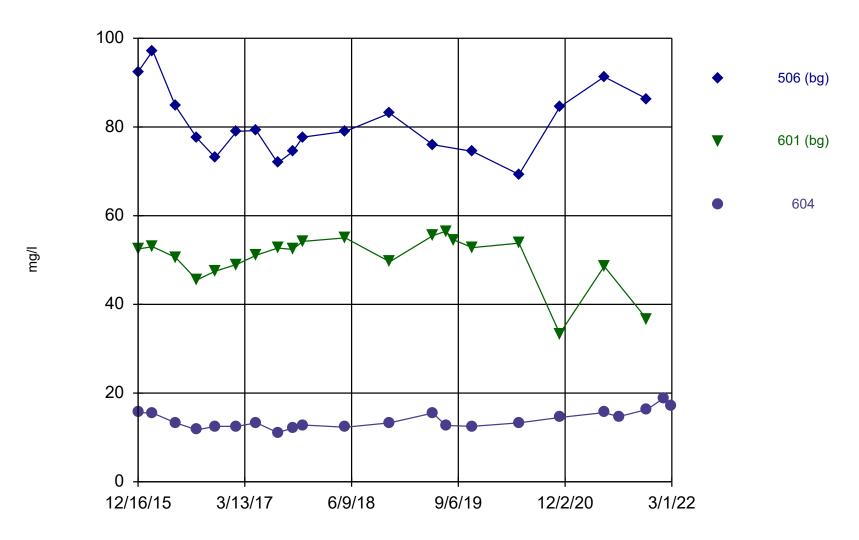
Appendix B

Piper Diagram Plots and Analytical Results

Analysis Run 5/17/2022 2:38 PM View: LF CCR III

Piper Diagram

Analysis Run 5/17/2022 2:40 PM View: LF CCR III


Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Totals (ppm)	Na	K	Ca	Mg	Cl	S04	нсо3	CO3
604 5/23/2016	336	2.97	474	127	13.3	1990	94.8	10
604 8/22/2016	214	2.63	440	106	11.7	2290	101	10
604 11/7/2016	206	2.79	412	104	12.5	2070	96.5	10
604 2/7/2017	215	2.88	392	98.4	12.5	1810	101	10
604 7/15/2019	203	2.76	386	99	12.7	1510	99.8	10
604 11/5/2019	210	2.68	407	103	12.5	1650	108	10
604 3/1/2022	236	2.9	483	118	17.2	2000	111	10
LEACHATE 8/22/2016	1010	20.8	5.88	0.5	18.5	1560	10	549
LEACHATE 2/7/2017	1050	23.9	5.47	0.5	16.3	1360	10	840
LEACHATE 11/5/2019	970	17	49.2	14.5	20.3	2240	44.1	64.2

Appendix C

Time Series Plots

Time Series

Constituent: Chloride Analysis Run 5/17/2022 2:20 PM View: LF CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Time Series

Constituent: Chloride (mg/l) Analysis Run 5/17/2022 2:22 PM View: LF CCR III Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

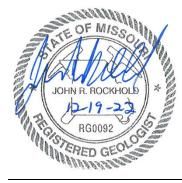
	506 (bg)	601 (bg)	604
12/16/2015	92.4	52.5	15.6
2/16/2016	97.2	53	15.5
5/23/2016	84.7	50.6	13.3
8/22/2016	77.5	45.5	11.7
11/7/2016			12.5
11/8/2016	73.1	47.5	
2/7/2017	79	49	12.5
5/1/2017	79.2		
5/2/2017		51.1	13.3
7/31/2017	71.9	52.7	11.1
10/2/2017	74.4	52.4	12.1
11/15/2017	77.7	54.2	12.8
5/14/2018	79	55	12.3
11/19/2018	83.1	49.6	13.3
5/21/2019	76	55.5	15.5
7/15/2019		56.5	12.7
8/19/2019		54.5	
11/5/2019	74.5	52.8	12.5
5/21/2020	69.3	53.8	13.3
11/10/2020	84.5	33.4	14.5
5/17/2021			15.6
5/18/2021	91.3	48.6	
7/19/2021			14.7
11/16/2021	86.3	36.6	16.3
1/24/2022			18.8
3/1/2022			17.2

APPENDIX C.2
CCR Groundwater Monitoring Alternative Source Demonstration Report May 2022 Groundwater Monitoring Event, CCR Landfill, Montrose Generating Station (December 2022)

CCR GROUNDWATER MONITORING ALTERNATIVE SOURCE DEMONSTRATION REPORT MAY 2022 GROUNDWATER MONITORING EVENT

CCR LANDFILL

Montrose Generating Station Evergy Metro, Inc. Clinton, Missouri


SCS ENGINEERS

December 2022 File No. 27213168.22

8575 W. 110th Suite 100 Overland Park, KS 66210 913-749-0700

CERTIFICATIONS

I, John R. Rockhold, being a qualified groundwater scientist and Registered Geologist in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Montrose Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted hydrogeological practices and the local standard of care.

John R. Rockhold, R.G.

SCS Engineers

I, Douglas L. Doerr, being a qualified licensed Professional Engineer in the State of Missouri, do hereby certify the accuracy of the information in the CCR Groundwater Monitoring Alternative Source Demonstration Report for the CCR Landfill at the Montrose Generating Station. The Alternative Source Demonstration was prepared by me or under my direct supervision in accordance with generally accepted engineering practices and the local standard of care.

Douglas L. Doerr, P.E.

SCS Engineers

Table of Contents

Sec	tion		Page
CER	TIFICA	ATIONS	i
1	Reg	ulatory Framework	
2	Stat	tistical Results	
3	Alte	ernative Source Demonstration	2
	3.1	Box and Whiskers Plots	2
	3.2	Piper Diagram Plots	2
	3.3	Time Series Plots	3
4	Con	clusion	3
5	Gen	neral Comments	4

Appendices

Appendix A Box and Whiskers Plots

Appendix B Piper Diagram Plots and Analytical Results

Appendix C Time Series Plot

1 REGULATORY FRAMEWORK

Certain owners or operators of Coal Combustion Residuals (CCR) units are required to complete groundwater monitoring activities to evaluate whether a release from the unit has occurred. Included in the activities is the completion of a statistical analysis of the groundwater quality data as prescribed in § 257.93(h) of the CCR Final Rule. If the initial analysis indicates a statistically significant increase (SSI) over background levels, the owner or operator may perform an alternative source demonstration (ASD). In accordance with § 257.94(e)(2), the owner or operator of the CCR unit may demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting an SSI over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with a detection monitoring program under § 257.94. If a successful demonstration is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under § 257.95. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

2 STATISTICAL RESULTS

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Montrose Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 10, 2022. Review and validation of the results from the May 2022 Detection Monitoring Event was completed on July 1, 2022, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 13, 2022 and August 16, 2022.

The completed statistical evaluation identified two Appendix III constituents above their prediction limits established for monitoring wells MW-604 and MW-605.

Monitoring Well Constituents			1st Verification July 13, 2022	2nd Verification August 16, 2022
MW-604				
Chloride	16.6	16.9	17.4	17.5
MW-605				
Calcium	437.3	482	434/450**	444

^{*}UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified

^{**} Duplicate Sample

SSIs above background prediction limits for chloride at monitoring well MW-604 and for calcium at monitoring well MW-605.

3 ALTERNATIVE SOURCE DEMONSTRATION

An Alternative Source Demonstration (ASD) is a means to provide supporting lines of evidence that something other than a release from a regulated CCR unit caused an SSI. For the above identified SSI for the CCR Landfill at the Montrose Generating Station, there are multiple lines of supporting evidence to indicate the above SSI was not caused by a release from the CCR Landfill. Select multiple lines of supporting evidence are described as follows.

3.1 BOX AND WHISKERS PLOTS

A commonly accepted method to demonstrate and visualize the distribution of data in a given data set is to construct box and whiskers plots. The basic box plotted graphically locates the median, 25th and 75th percentiles of the data set; the "whiskers" extend to the minimum and maximum values of the data set. The range between the ends of a box plot represents the Interquartile Range, which can be used as an estimate of spread or variability. The mean is denoted by a "+".

When comparing multiple wells or well groups, box plots for each well can be lined up on the same axis to roughly compare the variability in each well. This may be used as an exploratory screening for the test of homogeneity of variance across multiple wells.

An SSI was identified in well MW-604 for chloride. Therefore, box and whiskers plots for chloride in MW-604 and the two upgradient wells MW-506 and MW-601 were prepared to allow comparison of the chloride concentrations between wells. The comparison between wells indicates the chloride concentrations in well MW-604 are within or below the range of chloride in upgradient wells. This demonstrates that a source other than the CCR Landfill caused the SSI in chloride over background levels, or that the SSI resulted from natural variation in groundwater quality. Box and whisker plots are provided in **Appendix A**.

An SSI was identified in well MW-605 for calcium. Therefore, box and whiskers plots for calcium in MW-605 and the two upgradient wells MW-506 and MW-601 were prepared to allow comparison of the calcium concentrations between wells. The comparison between wells indicates the calcium concentrations in well MW-605 are within the range of calcium in upgradient wells. This demonstrates that a source other than the CCR Landfill caused the SSI in calcium over background levels, or that the SSI resulted from natural variation in groundwater quality. Box and whisker plots are provided in **Appendix A**.

3.2 PIPER DIAGRAM PLOTS

Piper diagrams are a form of tri-linear diagram, and a widely-accepted method to provide a visual representation of the ion concentration of groundwater. Piper diagrams portray water compositions and facilitate the interpretation and presentation of chemical analyses. They may be used to visually compare the chemical composition of water quality across wells, and aid in determining whether the waters are similar or dis-similar, and can over time indicate whether the waters are mixing.

A piper diagram has two triangular plots on the right and left side of a 4-sided center field. The three major cations are plotted in the left triangle and anions in the right. Each of the three cation/anion variables, in milliequivalents, is divided by the sum of the three values, to produce a percent of total cation/anions. These percentages determine the location of the associated symbol. The data points in the center field are located by extending the points in the lower triangles to the point of intersection. In order for a piper diagram to be produced, the selected data file must contain the following constituents: Sodium (Na), Potassium (K), Calcium (Ca), Magnesium (Mg), Chloride (Cl), Sulfate (SO4), Carbonate (CO3), and Bicarbonate (HCO3).

A piper diagram generated for MW-604, MW-605, and landfill leachate is provided in **Appendix B** along with the analytical results and indicates the groundwater from these wells do not exhibit the same geochemical characteristics as the leachate. The groundwater and the leachate plot in different hydrochemical facies indicating there is no mixing of the two types of water (groundwater and leachate). This demonstrates that a source other than the CCR Landfill caused the SSIs over background levels for chloride and calcium or that the SSI resulted from natural variation in groundwater quality.

3.3 TIME SERIES PLOTS

Time series plots provide a graphical method to view changes in data at a particular well (monitoring point) or wells over time. Time series plots display the variability in concentration levels over time and can be used to indicate possible outliers or data errors. More than one well can be compared on the same plot to look for differences between wells. Non-detect data is plotted as censored data at one-half of the laboratory reporting limit. Time series plots can also be used to examine the data for trends.

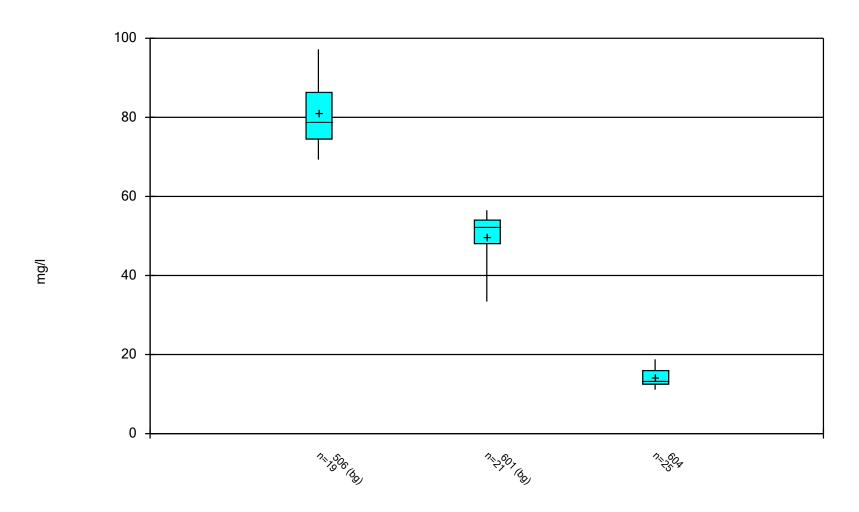
Time series plots for the chloride concentrations in MW-604 were plotted along with the chloride concentrations for upgradient wells MW-506 and MW-601. The plots indicate the chloride concentrations in MW-604 are below the concentrations in MW-506 and MW-601. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

Time series plots for the calcium concentrations in MW-605 were plotted along with the calcium concentrations for upgradient wells MW-506 and MW-601. The plots indicate the calcium concentrations in MW-605 are within the range of the concentrations in MW-506 and MW-601. This demonstrates that a source other than the CCR Landfill caused the SSI over background levels, or that the SSI resulted from natural variation in groundwater quality. Time series plots are provided in **Appendix C**.

4 CONCLUSIONS

Our opinion is that a sufficient body of evidence is available and presented above to demonstrate that a source other than the CCR Landfill caused the SSIs over background levels, or that the SSIs resulted from natural variation in groundwater quality. Based on the successful ASD, the owner or operator of the CCR Landfill may continue with the detection monitoring program under § 257.94.

5 GENERAL COMMENTS

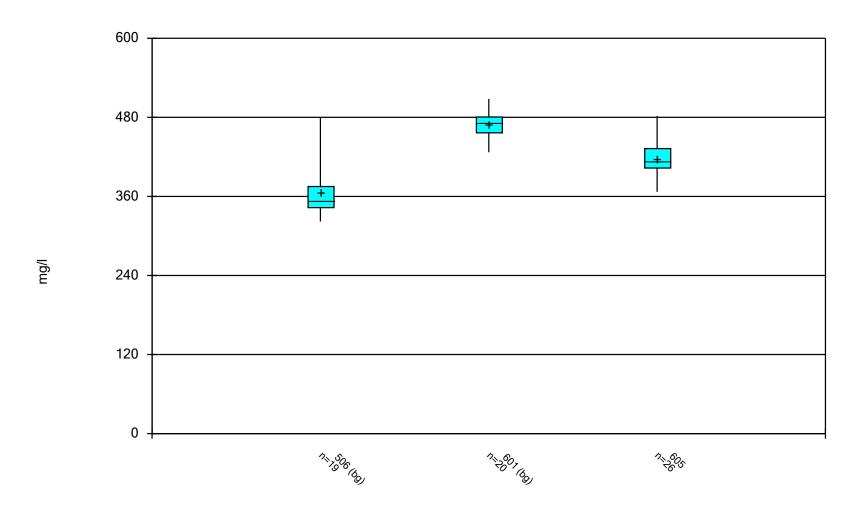

This report has been prepared and reviewed under the direction of a qualified groundwater scientist and qualified professional engineer. Please note that SCS Engineers does not warrant the work of regulatory agencies or other third parties supplying information used in the assimilation of this report. This report is prepared in accordance with generally accepted environmental engineering and geological practices, within the constraints of the client's directives. It is intended for the exclusive use of Evergy Metro, Inc. for specific application to the Montrose Generating Station. No warranties, express or implied, are intended or made.

The signatures of the certifying registered geologist and professional engineer on this document represent that to the best of their knowledge, information, and belief in the exercise of their professional judgement in accordance with the standard of practice, it is their professional opinions that the aforementioned information is accurate as of the date of such signatures. Any opinion or decisions by them are made on the basis of their experience, qualifications, and professional judgement and are not to be construed as warranties or guaranties. In addition, opinions relating to regulatory, environmental, geologic, geochemical and geotechnical conditions interpretations or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

Appendix A

Box and Whiskers Plots

Box & Whiskers Plot


Constituent: Chloride Analysis Run 11/26/2022 5:32 PM

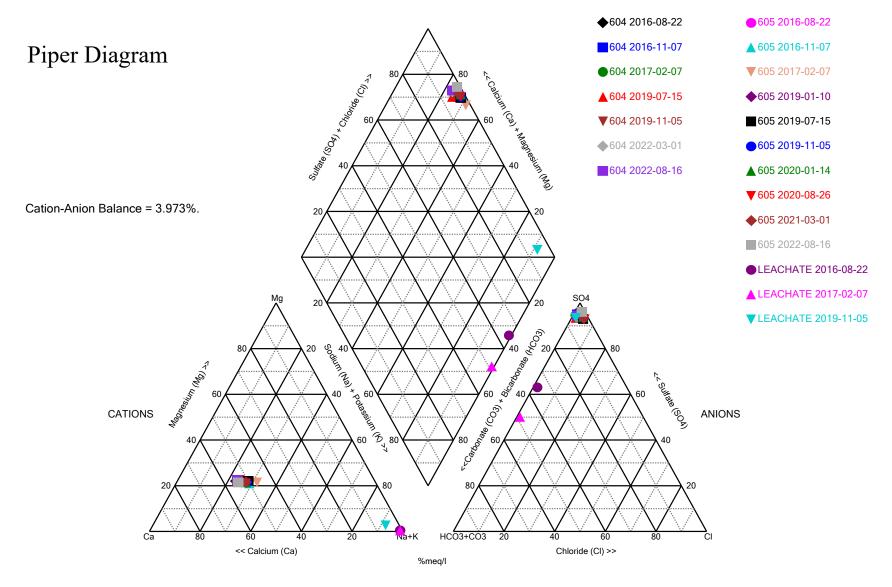
Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Box & Whiskers Plot

	Montrose Generating Station	on UWL C	lient: SCS Engine	ers Data: Montro	ose Printed 11/20	6/2022, 5:35 PM			
Constituent	<u>Well</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	%NDs
Chloride (mg/l)	506 (bg)	19	81.05	7.62	1.748	79	69.3	97.2	0
Chloride (mg/l)	601 (bg)	21	49.74	6.225	1.358	52.4	33.4	56.5	0
Chloride (mg/l)	604	25	14.36	2.141	0.4282	13.3	11.1	18.8	0

Box & Whiskers Plot

Constituent: Calcium Analysis Run 11/26/2022 5:37 PM


Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Box & Whiskers Plot

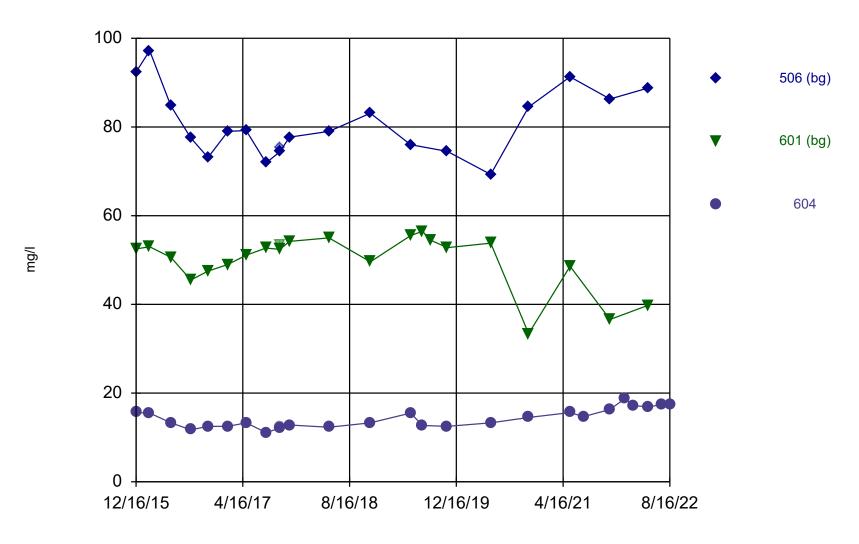
	Montrose Generating Stati	on UWL C	lient: SCS Engine	ers Data: Montre	ose Printed 11/2	6/2022, 5:38 PM			
<u>Constituent</u>	<u>Well</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Std. Err.	<u>Median</u>	Min.	Max.	%NDs
Calcium (mg/l)	506 (bg)	19	367.5	39.15	8.981	354	322	479	0
Calcium (mg/l)	601 (bg)	20	469.1	21.67	4.845	472	427	508	0
Calcium (mg/l)	605	26	416.6	23.57	4.623	413.5	367	482	0

Appendix B

Piper Diagram Plots and Analytical Results

Analysis Run 11/28/2022 8:34 AM View: LF Piper

Piper Diagram


Analysis Run 11/28/2022 8:35 AM View: LF Piper

		N	Montrose Genera	ting Station U	WL Client: S	CS Engineers	Data: Mont	trose
Totals (ppm)	Na	K	Ca	Mg	Cl	SO4	нсоз	CO3
604 2016-08-22	214	2.63	440	106	11.7	2290	101	10
604 2016-11-07	206	2.79	412	104	12.5	2070	96.5	10
604 2017-02-07	215	2.88	392	98.4	12.5	1810	101	10
604 2019-07-15	203	2.76	386	99	12.7	1510	99.8	10
604 2019-11-05	210	2.68	407	103	12.5	1650	108	10
604 2022-03-01	236	2.9	483	118	17.2	2000	111	10
604 2022-08-16	218	3.17	449	111	17.5	2130	116	10
605 2016-08-22	270	2.51	431	111	46.5	2230	40.9	10
605 2016-11-07	271	2.63	407	104	48.2	2280	44	10
605 2017-02-07	284	2.71	367	101	48	2050	48.1	10
605 2019-01-10	264	2.79	421	107	50.9	1870	42	10
605 2019-07-15	261	2.73	407	108	57.8	1640	41.6	10
605 2019-11-05	248	2.6	399	102	59.1	1730	42.8	10
605 2020-01-14	240	2.48	395	101	60.5	1860	38.1	10
605 2020-08-26	244	2.44	396	97.5	61.6	1690	36.8	10
605 2021-03-01	244	2.55	407	103	58.2	1720	40.1	10
605 2022-08-16	225	3.03	444	105	36.7	2090	32.6	10
LEACHATE 2016-08-22	1010	20.8	5.88	0.5	18.5	1560	10	549
LEACHATE 2017-02-07	1050	23.9	5.47	0.5	16.3	1360	10	840
LEACHATE 2019-11-05	970	17	49.2	14.5	20.3	2240	44.1	64.2

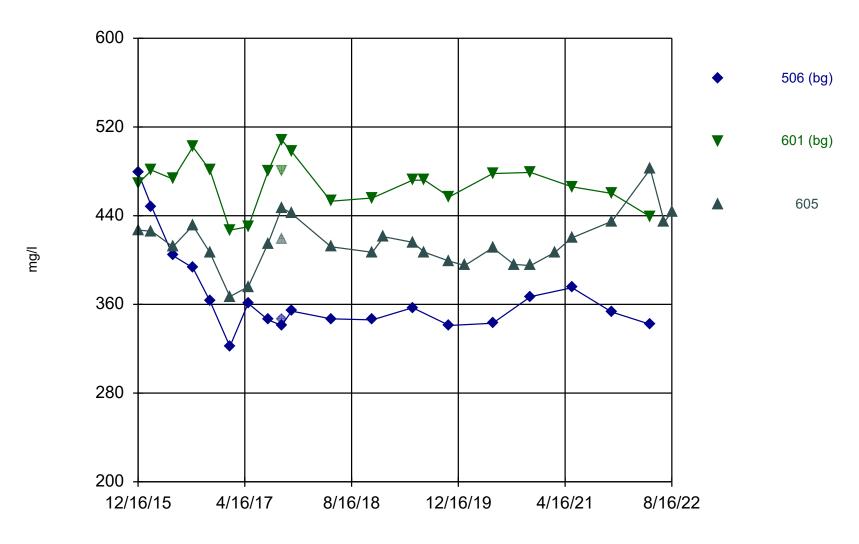
Appendix C

Time Series Plots

Time Series

Constituent: Chloride Analysis Run 11/26/2022 5:35 PM

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose


Time Series

Constituent: Chloride (mg/l) Analysis Run 11/26/2022 5:36 PM

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	506 (bg)	601 (bg)	604
12/16/2015	92.4	52.5	15.6
2/16/2016	97.2	53	15.5
5/23/2016	84.7	50.6	13.3
8/22/2016	77.5	45.5	11.7
11/7/2016			12.5
11/8/2016	73.1	47.5	
2/7/2017	79	49	12.5
5/1/2017	79.2		
5/2/2017		51.1	13.3
7/31/2017	71.9	52.7	11.1
10/2/2017	74.4	52.4	12.1
11/15/2017	77.7	54.2	12.8
5/14/2018	79	55	12.3
11/19/2018	83.1	49.6	13.3
5/21/2019	76	55.5	15.5
7/15/2019		56.5	12.7
8/19/2019		54.5	
11/5/2019	74.5	52.8	12.5
5/21/2020	69.3	53.8	13.3
11/10/2020	84.5	33.4	14.5
5/17/2021			15.6
5/18/2021	91.3	48.6	
7/19/2021			14.7
11/16/2021	86.3	36.6	16.3
1/24/2022			18.8
3/1/2022			17.2
5/10/2022	88.8	39.8	16.9
7/13/2022			17.4
8/16/2022			17.5

Time Series

Constituent: Calcium Analysis Run 11/26/2022 5:36 PM

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Time Series

Constituent: Calcium (mg/l) Analysis Run 11/26/2022 5:37 PM

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	506 (bg)	601 (bg)	605
12/16/2015	479	469	
12/17/2015			427
2/16/2016	448	481	426
5/23/2016	404	473	412
8/22/2016	393	502	431
11/7/2016			407
11/8/2016	363	481	
2/7/2017	322	427	367
5/1/2017	361		
5/2/2017		430	376
7/31/2017	346	480	415
10/2/2017	341	508	447
11/15/2017	354	498	442
5/14/2018	347	453	412
11/19/2018	346	456	407
1/10/2019			421
5/21/2019	357	472	416
7/15/2019		472	407
11/5/2019	341	457	399
1/14/2020			395
5/21/2020	343	478	411
8/26/2020			396
11/10/2020	367	479	395
3/1/2021			407
5/17/2021			420
5/18/2021	375	466	
11/16/2021	353	460	435
5/10/2022	342 (M1V)	439	482
7/13/2022			434
8/16/2022			444

APPENDIX D

LABORATORY ANALYTICAL REPORTS

- January 2022 First verification sampling for the Fall 2021 detection monitoring event.
- March 2022 Second verification sampling for the Fall 2021 detection monitoring event.
- May 2022 Spring 2022 semiannual detection monitoring sampling event.
- July 2022 First verification sampling for the Spring 2022 detection monitoring sampling event.
- August 2022 Second verification sampling for Spring 2022 detection monitoring sampling event.
- November 2022 Fall 2022 semiannual detection monitoring sampling event.

Pace Analytical® ANALYTICAL REPORT

February 03, 2022

SCS Engineers - KS

Sample Delivery Group: L1455127

Samples Received: 01/26/2022

Project Number: 27213168.21 - G

Description: Evergy - Montrose Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jeff Carr Project Manager

Tubb lan

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-604 L1455127-01	5
DUPLICATE L1455127-02	6
Qc: Quality Control Summary	7
Wet Chemistry by Method 9056A	7
Metals (ICP) by Method 6010D	9
GI: Glossary of Terms	10
Al: Accreditations & Locations	11
Sc: Sample Chain of Custody	12

PAGE:

2 of 12

SAMPLE SUMMARY

MW-604 L1455127-01 GW			Collected by Jason R Franks	O1/24/22 13:50	Received da 01/26/22 09	
	Detel	Diletie	Dunanation	A	A l t	Landina
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1809058	5	01/27/22 16:06	01/27/22 16:06	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1810065	1	01/31/22 22:15	02/02/22 22:11	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE L1455127-02 GW			Jason R Franks	01/24/22 13:50	01/26/22 09	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1809058	5	01/27/22 17:12	01/27/22 17:12	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1810065	1	01/31/22 22:15	02/02/22 22:37	CCE	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jeff Carr Project Manager

uph law

MW-604

Analyte

Boron

SAMPLE RESULTS - 01

Collected date/time: 01/24/22 13:50

Metals (ICP) by Method 6010D

Result

ug/l

5310

Qualifier

<u>O1</u>

RDL

ug/l

200

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	18800		5000	5	01/27/2022 16:06	WG1809058

Dilution

1

Analysis

date / time

02/02/2022 22:11

Batch

WG1810065

DUPLICATE

SAMPLE RESULTS - 02

L1455127

Wet Chemistry by Method 9056A

Collected date/time: 01/24/22 13:50

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	17900		5000	5	01/27/2022 17:12	WG1809058

²Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Boron	5290		200	1	02/02/2022 22:37	WG1810065

WG1809058

QUALITY CONTROL SUMMARY

L1455127-01,02

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R3754577-1 01/27/2	22 10:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000

²Tc

Ss

L1454168-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1454168-03 01/27/22 13:17 • (DUP) R3754577-3 01/27/22 13:29

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Chloride	90500	92000	5	1.65		15	

⁶Qc

L1455127-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1455127-02 01/27/22 17:12 • (DUP) R3754577-8 01/27/22 17:25

(00) 11400127-02 01/27/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	17900	18300	5	2.21		15

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3754577-2 01/27/22 10:38

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40300	101	80.0-120	

L1455247-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1455247-03 01/27/22 13:42 • (MS) R3754577-4 01/27/22 13:56 • (MSD) R3754577-5 01/27/22 14:35

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	102000	148000	145000	91.6	87.1	1	80.0-120	E	E	1.51	15

L1455127-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1455127-01 01/27/22 16:06 • (MS) R3754577-6 01/27/22 16:20 • (MSD) R3754577-7 01/27/22 16:33

(,,,,,,,,,,	Spike Amount				MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	18800	69100	68100	101	98.5	5	80.0-120			1.51	15

WG1809058

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1455127-01,02

L1455321-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1455321-03 01/27/22 17:53 • (MS) R3754577-9 01/27/22 18:07 • (MSD) R3754577-10 01/27/22 18:20

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	3430	53600	54800	100	103	1	80.0-120			2.16	15

WG1810065

QUALITY CONTROL SUMMARY

L1455127-01,02

Method Blank (MB)

(MB) R3756387-1 02/02/22 22:06

Metals (ICP) by Method 6010D

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200


Laboratory Control Sample (LCS)

(LCS) R3756387-2 02/02/22 22:09

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	965	96.5	80 0-120	

(OS) L1455127-01 02/02/22 22:11 • (MS) R3756387-4 02/02/22 22:17 • (MSD) R3756387-5 02/02/22 22:19

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	5310	6170	6210	85.7	90.1	1	75.0-125			0.708	20

L1455811-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1455811-05 02/02/22 22:22 • (MS) R3756387-6 02/02/22 22:24 • (MSD) R3756387-7 02/02/22 22:27

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Boron	1000	ND	993	984	99.3	98.4	1	75.0-125			0.858	20	

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

ADDIEVIALIONS AND	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

ACCREDITATIONS & LOCATIONS

Pace Analytical I	National	12065 Lebanor	ı Rd Mount	Juliet TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
ldaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:			Billing Info	ormation:					Analysi	/ Conta	iner / Preservative	1		Chain of Custody	Page of
8575 W. 110th Street		8575 W	Accounts Payable 8575 W. 110th Street Overland Park, KS 66210			1			AUGUSTS / CONTAINET / PTESPTVATIVE				Pa	ce.	
Report to: Jason Franks	Email To: jfranks@scsengineers.com;jay.martin@eve			vergy.c								MT JULIET, TN 12065 Lebanon Rd Mount Juliet, TN 37122			
Project Description: Evergy - Montrose Generating Station	- 4	City/State Collected:	MONTROSE MOT MT CT ET					125mlHDPE-NoPres				10 10 10 10 10 10 10 10 10 10 10 10 10 1		12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at: https://info.pacelabs.com/hubfs/pas-standard-	
Phone: 913-681-0030	Client Project 27213168.		Lab Project # AQUAOPKS-MONTROSE				250mHDPE-HNO3						terms		SDG# C052
Collected by (print): FRANKS	Site/Facility II	D#		P.O.#			NHDPE	SmiHD		The state of the s				Tal. Acctnum: AQU	
Collected by (signature): Joseph K- from his Inmediately Packed on Ice N Y	Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only) Three Day			INO.			6010 250m	- 9056						Template:T135965 Prelogin: P900449 PM: 206 - Jeff Carr PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	of Cntrs	Boron -	Chloride						Shipped Via:	Sample # (lab only)
1W-604	GRAB	GW	_	61/24/22	1350	2	X	X	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Remarks	
/IW-604 MS/MSD	GRAG	GW	-	01/24/22	F	2	X	X							-01
UPLICATE	GRAS	GW	-	01/24/22		2	Х	Х							-98
		(m. 1)							8 2 2			ex Tells			
		4	-1												
	4												1 -	1	

- Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater N - Drinking Water	pples returned v	Courier	Time:		ng # 52 ed by: (Signatu	300 ire)	04	f291	pH Flow	8	HCL / MeoH	COC S Bottl Corre Suffi VOA Z Prese	eal Pr igned/ es arr ect bot cient ero He rvatio	le Receipt Che esent/Intact: Accurate: ive intact: tles used: volume sent: If Applicable adspace: n Correct/Chec <0.5 mR/hr:	N Y N Y N N N N N N N N N N N N N N N N
linquished by: (Signature)	Date	105/2	Time:		ed by: (Signatu	ire)			temp:	3, 05	TBR Bottles Received:	If prese	ervation	required by Logi	n: Date/Time

Pace Analytical® ANALYTICAL REPORT

March 07, 2022

SCS Engineers - KS

Sample Delivery Group:

L1466981

Samples Received:

03/02/2022

Project Number:

27213168.21 - G

Description:

Evergy - Montrose Generating Station

Tubb law

Report To:

Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jeff Carr Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-604 L1466981-01	5
DUPLICATE L1466981-02	6
Qc: Quality Control Summary	7
Wet Chemistry by Method 9056A	7
GI: Glossary of Terms	9
Al: Accreditations & Locations	10
Sc: Sample Chain of Custody	11

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-604 L1466981-01 GW			Jason R Franks	03/01/22 14:35	03/02/22 09):15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Vet Chemistry by Method 9056A	WG1826668	5	03/03/22 17:40	03/03/22 17:40	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE L1466981-02 GW			Jason R Franks	03/01/22 14:35	03/02/22 09):15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1826668	5	03/03/22 18:25	03/03/22 18:25	LBR	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jeff Carr Project Manager

uph law

MW-604

SAMPLE RESULTS - 01

Collected date/time: 03/01/22 14:35

L1466981

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Chloride	17200	В	5000	5	03/03/2022 17:40	WG1826668

DUPLICATE

SAMPLE RESULTS - 02

Collected date/time: 03/01/22 14:35

L1466981

Wet Chemistry by Method 9056A

	Result Qualifier		RDL Dilution		Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l		date / time		
Chloride	16900	В	5000	5	03/03/2022 18:25	WG1826668	

QUALITY CONTROL SUMMARY

L1466981-01,02

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R3766741-1 03/03/	22 09:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chlorido	200	1	270	1000

³Ss_

L1466230-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1466230-01 03/03/22 11:42 • (DUP) R3766741-3 03/03/22 11:57

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	1600	1600	1	0.0750		15

L1466889-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1466889-05 03/03/22 15:26 • (DUP) R3766741-6 03/03/22 15:41

		Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
I	Analyte	ug/l	ug/l		%		%
(Chloride	337000	337000	1	0.0773	<u>E</u>	15

Laboratory Control Sample (LCS)

(LCS) R3766741-2 03/03/22 10:08

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40200	100	80.0-120	

Sc

L1466230-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1466230-01 03/03/22 11:42 • (MS) R3766741-4 03/03/22 12:12 • (MSD) R3766741-5 03/03/22 12:27

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Chloride	50000	1600	52800	52800	102	102	1	80.0-120			0.0673	15	

L1466889-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1466889-06 03/03/22 15:55 • (MS) R3766741-7 03/03/22 16:10 • (MSD) R3766741-8 03/03/22 16:55

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	624000	647000	655000	46.2	60.7	20	80.0-120	V	V	1.11	15

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1466981-01,02

L1466981-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1466981-01 03/03/22 17:40 • (MS) R3766741-9 03/03/22 17:55 • (MSD) R3766741-10 03/03/22 18:10

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	17200	66400	65600	98.3	96.8	5	80.0-120			1.18	15

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	L)e:	S	CI	1	р	t١	0	r
-----------	---	-----	---	----	---	---	----	---	---

В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:	***************************************		Billing Info	rmation:		T	I		Analysis	/ Contain	er / Pres	ervativ	ρ		Cha	in of Custody	Page of
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			Accounts 8575 W.	s Payable 110th Stree d Park, KS 66		Pres Chk											ICE* ADVANCING SCIENCE
Report to: Jason Franks			Email To: jfranks@so		n;jay.martin@e	vergy.c									Subr	55 Lebanon Rd Mou	JLIET, TN unt Juliet, TN 37122 this chain of custody ment and acceptance of
Project Description: Evergy - Montrose Generating Station		City/State Collected:	City	TON /	Please C		oPre								Pace http	Terms and Conditi	
Phone: 913-681-0030	272131	oject # 168.21 - G		AQUAOPK	s-MONTROS	Ε	HDPE-NoPres								SD	6# / 7 E036	6698
Collected by (print): RAWK	Site/Faci	lity ID#		P.O. #			125mlH									ctnum: AQI	
Collected by (signature):	Sa Ne	h? (Lab MUST Be me Day Five ext Day 5 Da vo Day 10 D	Day	Quote #	sults Needed	No.	-9056								Pre	mplate: T13 elogin: P90 I: 206 - Jeff (8199
Packed on Ice N Y Sample ID		ree Day	Depth	Date	Time	of Cntrs	Chloride								Shi	pped Via:	Sample # (lab o
MW-604	Lon	R GW	-	03/01/	77 1435	1	X										-01
MW-604 MS/MSD		GW	-	1	1435	1	X										
DUPLICATE		/ GW	-	1	1435	1	Х						3 . · · /				-02
					*												
																	1000000
V																	41
* *																	
				•												-	
																	1
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	temarks:								pH Flov		_ Temp			COC Sea COC Sig Bottles	al Presengned/Accor s arrive	urate: intact:	NP Y
OT Other	Samples retu	irned via: edEx Courie		Tra	cking #	5	300	4794						Suffici VOA Zei	If ro Heads	ume sent: Applicab pace:	Y
Relinquished by : (Signature)	_	Date: 63/21/2	Time	Rei	ceived by: (Signa				Trip Bla	nk Receiv	√ 1	S/No CL/Me BR	оН			orrect/Che 5 mR/hr:	scked: Y
Relinquished by : (Signature)		Date:	Time		ceived by: (Signa	ature)			Temp:N	5960 0=4-	C Bottle	s Recei	red:	If preser	vation req	uired by Log	gin: Date/Time
Relinquished by : (Signature)		Date:	Time	Re Re	ceived for lab by	: (Signal	ture) 2		Date:	1001	Time	09	15	Hold:			NCF / OF

Pace Analytical® ANALYTICAL REPORT

March 09, 2022

SCS Engineers - KS

Sample Delivery Group: L1466979

Samples Received: 03/02/2022

Project Number: 27213168.21-G

Description: Evergy - Montrose Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb lan

Entire Report Reviewed By:

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-604 L1466979-01	5
Qc: Quality Control Summary	6
Wet Chemistry by Method 2320 B-2011	6
Wet Chemistry by Method 9056A	7
Metals (ICP) by Method 6010D	8
GI: Glossary of Terms	9
Al: Accreditations & Locations	10
Sc: Sample Chain of Custody	11

SAMPLE SUMMARY

MW-604 L1466979-01 GW			Collected by Jason R Franks	Collected date/time 03/01/22 14:35	Received da 03/02/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 2320 B-2011	WG1828038	1	03/06/22 04:51	03/06/22 04:51	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1827867	100	03/05/22 20:14	03/05/22 20:14	VRP	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1826688	1	03/06/22 23:25	03/07/22 13:20	ZSA	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jeff Carr Project Manager

up lan

DATE/TIME:

03/09/22 16:54

SAMPLE RESULTS - 01

Collected date/time: 03/01/22 14:35

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Alkalinity,Bicarbonate	111000		20000	1	03/06/2022 04:51	WG1828038
Alkalinity, Carbonate	ND		20000	1	03/06/2022 04:51	WG1828038

Sample Narrative:

L1466979-01 WG1828038: Endpoint pH 4.5 Headspace

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Sulfate	2000000		500000	100	03/05/2022 20:14	<u>WG1827867</u>

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Calcium	483000	V	1000	1	03/07/2022 13:20	WG1826688
Magnesium	118000	\vee	1000	1	03/07/2022 13:20	WG1826688
Potassium	2900		2000	1	03/07/2022 13:20	WG1826688
Sodium	236000	V	3000	1	03/07/2022 13:20	WG1826688

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 2320 B-2011

L1466979-01

Method Blank (MB)

(MB) R3766782-2 03/06	5/22 03:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Alkalinity,Bicarbonate	U		8450	20000
Alkalinity, Carbonate	U		8450	20000

Sample Narrative:

BLANK: Endpoint pH 4.5

L1466889-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1466889-06 03/06/22 03:46 • (DUP) R3766782-4 03/06/22 03:50

(03) [1400889=00 03/00/	22 03.40 • (D0	r) K3/00/02-	+ 03/00/2	2 03.30		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Alkalinity,Bicarbonate	832000	845000	1	1.53		20
Alkalinity,Carbonate	ND	ND	1	0.000		20

Gl

⁸Al

⁹Sc

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1466979-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1466979-01 03/06/22 04:51 • (DUP) R3766782-6 03/06/22 04:54

(00) 21.100070 01. 00/01	0,22 0 (2 0.	,,,	00,00,2	- 0		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Alkalinity,Bicarbonate	111000	112000	1	0.851		20
Alkalinity, Carbonate	ND	ND	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

QUALITY CONTROL SUMMARY

L1466979-01

Wet Chemistry by Method 9056A

Method Blank (MB)

Sulfate

(MB) R3767047-1 03/05/2	2 10:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l

Ss

L1466573-01 Original Sample (OS) • Duplicate (DUP)

U

(OS) L1466573-01 03/05/22 12:32 • (DUP) R3767047-3 03/05/22 12:47

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	18200	18400	1	0.628		15

594

5000

L1467119-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1467119-01 03/05/22 19:14 • (DUP) R3767047-6 03/05/22 19:29

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	311000	310000	20	0.278		15

Laboratory Control Sample (LCS)

(LCS) R3767047-2 03/05/22 10:20

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Sulfate	40000	39000	97.5	80.0-120	

L1467119-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1467119-01 03/05/22 19:14 • (MS) R3767047-7 03/05/22 19:44 • (MSD) R3767047-8 03/05/22 19:59

(,	Spike Amount			•	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Sulfate	50000	311000	346000	344000	70.0	65.2	20	80.0-120	V	V	0.701	15

QUALITY CONTROL SUMMARY

L1466979-01

Method Blank (MB)

(MB) R3767307-1 03/07/22 13:04

Metals (ICP) by Method 6010D

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	U		79.3	1000
Magnesium	U		85.3	1000
Potassium	U		261	2000
Sodium	U		504	3000

Laboratory Control Sample (LCS)

(LCS) R3767307-2 03/07/22 13:07

(200) 110707007 2 00707	722 10.07				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	9530	95.3	80.0-120	
Magnesium	10000	9690	96.9	80.0-120	
Potassium	10000	9190	91.9	80.0-120	
Sodium	10000	9990	99.9	80.0-120	

⁸Al

L1466975-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1466975-02 03/07/22 13:09 • (MS) R3767307-4 03/07/22 13:14 • (MSD) R3767307-5 03/07/22 13:17

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	162000	170000	171000	76.6	86.1	1	75.0-125			0.554	20
Magnesium	10000	30900	39300	39100	84.4	82.6	1	75.0-125			0.452	20
Potassium	10000	8020	17400	18300	94.2	103	1	75.0-125			5.05	20
Sodium	10000	7430	16900	16900	94.5	95.0	1	75.0-125			0.324	20

⁹Sc

L1466979-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1466979-01 03/07/22 13:20 • (MS) R3767307-6 03/07/22 13:22 • (MSD) R3767307-7 03/07/22 13:25

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	483000	484000	484000	4.57	5.48	1	75.0-125	V	V	0.0189	20
Magnesium	10000	118000	124000	125000	64.9	70.0	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	0.412	20
Potassium	10000	2900	13000	13000	101	101	1	75.0-125			0.123	20
Sodium	10000	236000	241000	240000	50.1	46.3	1	75.0-125	\vee	\vee	0.157	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations an	d Delimitoris
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

٧

The sample concentration is too high to evaluate accurate spike recoveries.

¹Cp

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 SCS Engineers - KS
 27213168.21-G
 L1466979
 03/09/22 16:54
 9 of 11

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

PAGE:

10 of 11

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	rmation:						Д	Analysis	Contair	ner / Pres	ervative	9		Chain of Custod	Page of _
SCS Engineers - KS			Accounts 8575 W.				Pres Chk		27								B	,
8575 W. 110th Street Overland Park, KS 66210			Overland			0												ACE ADVANCING SCIENCE
Report to: Jason Franks			Email To: jfranks@so		rs.com;ja	y.martin@ev	vergy.c		NO3								12065 Lebanon Rd Mo Submitting a sample vi	JLIET, TN Junt Juliet, TN 37122 a this chain of custody gment and acceptance of the
Project Description: Evergy - Montrose Generating Station		City/State Collected:	CATIVION, MO PT MT CO					Pres	DPE-H								Pace Terms and Condit	
Phone: 913-681-0030	27213168.2		Lab Project # AQUAOPKS-MONTROSE					125mlHDPE-NoPres	250mIHDPE-HNO3	res							SDG # 10	66979
Collected by (print): Ranke	Site/Facility ID	#		P.O. #				mIHDI	6010 250	125mlHDPE-NoPres							Acctnum: AQ	
Collected by (signature)	Rush? (L	ab MUST Be		Quote	#			A 125	×	MIHDE							Template: T14 Prelogin: P90	
Next Day5		10 Da	y (Rad Only) ay (Rad Only)	Dat	te Results	Needed	No.	ALKCA	g, Na,								PM: 206 - Jeff PB:	
Sample ID	Comp/Grab	Matrix *	Depth	D	ate	Time	Cntrs	ALKBI,	Ca, Mg,	Sulfate							Shipped Via:	Sample # (lab only)
MW-604	GRAS	GW		63/0	1/22	1435	3	X	X	X								-01
	48																	
***														. 1				
										÷								
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	marks:			•							pH Flow		_ Temp _ Other		C B	COC Seal	ample Receipt Ch Present/Intact ned/Accurate: arrive intact:	
WW - WasteWater DW - Drinking Water OT - Other	mples returned UPSFedEx				Trackin	g# 5	30	04	291	430	95				S	Sufficie	bottles used: ent volume sent: If Applicab Headspace:	_Y_N
Relinquished by : (Stanature)	Da	te: /	Time	,00	Receive	ed by: (Signat	ture)				Trip Blar	k Receiv		CL/Meo	R		ation Correct/Cheen <0.5 mR/hr:	ecked: N
Relinquished by : (Signature)	Da	1011	Time	-	Receive	ed by: (Signat	ture)				Temp:		C Bottle	s Receive	ed:	f preserva	ation required by Log	gin: Date/Time
elinquished by : (Signature) Date:			Time	:	Receive	ed for tab by:	(Signat	ure)	Date: Time: 0915							Hold:		Condition:

Pace Analytical® ANALYTICAL REPORT

June 27, 2022

Revised Report

SCS Engineers - KS

Sample Delivery Group: L1492460 Samples Received: 05/11/2022

Project Number: 27213168.22-A

Description: Evergy - Montrose Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb lan

Entire Report Reviewed By:

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-506 L1492460-01	5
DUPLICATE L1492460-02	6
Qc: Quality Control Summary	7
Gravimetric Analysis by Method 2540 C-2011	7
Wet Chemistry by Method 9056A	8
Metals (ICP) by Method 6010D	9
GI: Glossary of Terms	10
Al: Accreditations & Locations	11
Sc: Sample Chain of Custody	12

SAMPLE SUMMARY

			Collected by	Collected date/time	Received date/time		
MW-506 L1492460-01 GW			Matt Vander Puttey	05/10/22 11:40	05/11/22 09:	00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1865200	1	05/17/22 14:51	05/17/22 16:36	MMF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1871277	100	05/29/22 13:40	05/29/22 13:40	ELN	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1871277	2	05/29/22 13:27	05/29/22 13:27	ELN	Mt. Juliet, TN	
Metals (ICP) by Method 6010D	WG1865405	1	05/18/22 13:54	05/20/22 03:26	CCE	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	Received date/time	
DUPLICATE L1492460-02 GW			Matt Vander Puttey	05/10/22 11:40	05/11/22 09:	00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1865200	1	05/17/22 14:51	05/17/22 16:36	MMF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1871277	100	05/29/22 14:30	05/29/22 14:30	ELN	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1871277	2	05/29/22 14:17	05/29/22 14:17	ELN	Mt. Juliet, TN	

WG1865405

1

05/18/22 13:54

05/20/22 04:21

CCE

Mt. Juliet, TN

Metals (ICP) by Method 6010D

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

PAGE:

4 of 12

Level II Report - Version 1: 05/31/22 14:02

Project Narrative

Jeff Carr Project Manager

This report has been revised by reporting to the MDLs.

ubb lan

SAMPLE RESULTS - 01

Collected date/time: 05/10/22 11:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	2800000		50000	1	05/17/2022 16:36	WG1865200

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	88800		758	2000	2	05/29/2022 13:27	WG1871277
Fluoride	U		128	300	2	05/29/2022 13:27	WG1871277
Sulfate	1420000	\vee	59400	500000	100	05/29/2022 13:40	WG1871277

Motale (ICD) by Moth	and 6010D						
Sulfate	1420000	V	59400	500000	100	05/29/2022 13:40	WG1871277
Fluoride	U		128	300	2	05/29/2022 13:27	WG1871277
Chloride	88800		758	2000	2	05/29/2022 13:27	WG1871277

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	86.0	<u>J</u>	20.0	200	1	05/20/2022 03:26	WG1865405
Calcium	342000	O1 V	79.3	1000	1	05/20/2022 03:26	WG1865405

DUPLICATE

SAMPLE RESULTS - 02

Collected date/time: 05/10/22 11:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	2790000		13300	1	05/17/2022 16:36	WG1865200

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	89300		758	2000	2	05/29/2022 14:17	WG1871277
Fluoride	U		128	300	2	05/29/2022 14:17	WG1871277
Sulfate	1390000		59400	500000	100	05/29/2022 14:30	WG1871277

Cn

³Ss

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	96.1	<u>J</u>	20.0	200	1	05/20/2022 04:21	WG1865405
Calcium	345000		79.3	1000	1	05/20/2022 04:21	WG1865405

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1492460-01,02

Method Blank (MB)

(MB) R3793937-1 05/17/22 16:36

, , , , , , , , , , , , , , , , , , , ,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

L1491768-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1491768-01 05/17/22 16:36 • (DUP) R3793937-3 05/17/22 16:36

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1600000	1640000	1	2.16		5

L1492151-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1492151-03 05/17/22 16:36 • (DUP) R3793937-4 05/17/22 16:36

,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	815000	801000	1	1.65		5	

Laboratory Control Sample (LCS)

(LCS) R3793937-2 05/17/22 16:36

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Dissolved Solids	2460000	2600000	106	81.7-118

QUALITY CONTROL SUMMARY

L1492460-01,02

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R3797697-1	05/29/22 12:31
-----------------	----------------

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Fluoride	U		64.0	150
Sulfate	U		594	5000

(OS) L1492766-02 05/29/22 20:03 • (DUP) R3797697-5 05/29/22 20:15

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Chloride	35200	35300	1	0.154		15	
Sulfate	33800	33800	1	0.0222		15	

Laboratory Control Sample (LCS)

(LCS) R3797697-2 05/29/22 12:43

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Chloride	40000	39900	99.7	80.0-120
Fluoride	8000	7970	99.6	80.0-120
Sulfate	40000	38900	97.2	80.0-120

Sc

L1492460-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1492460-01 05/29/22 13:27 • (MS) R3797697-3 05/29/22 13:52 • (MSD) R3797697-4 05/29/22 14:05

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	88800	134000	135000	90.3	92.3	2	80.0-120			0.754	15
Fluoride	5000	U	4260	4320	85.2	86.3	2	80.0-120			1.27	15
Sulfate	50000	1620000	1640000	1650000	39.0	60.3	2	80.0-120	EV	<u>E V</u>	0.649	15

LCS Qualifier

L1492766-02 Original Sample (OS) • Matrix Spike (MS)

(US) L1492/66-U2 US/29/	(OS) L1492766-02 OS/29/22 20:03 • (MS) R3/97697-6 OS/29/22 20:28									
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier			
Analyte	ug/l	ug/l	ug/l	%		%				
Chloride	50000	35200	85400	100	1	80.0-120				
Sulfate	50000	33800	84500	102	1	80.0-120				

QUALITY CONTROL SUMMARY

L1492460-01,02

Method Blank (MB)

Metals (ICP) by Method 6010D

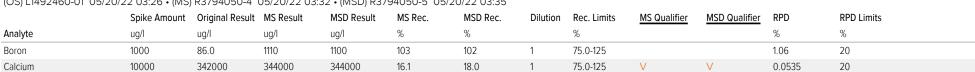
(MB) R3794050-1 C	05/20/22 03:21			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200
Calcium	U		79.3	1000

Ss

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3794050-2 05/20/22 03:23								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	ug/l	ug/l	%	%				
Boron	1000	1010	101	80.0-120				
Calcium	10000	10100	101	80.0-120				



GI

L1492460-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	Definitions
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: 27213168.22-A L1492460 06/27/22 19:22 SCS Engineers - KS 10 of 12

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

SDG:

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SCS Engineers - KS 8575 W. 110th Street		8575 W. 110th Street			Pres Chk		N Y	A	nalvsis / Co	ontainer / Prese	vative			Chain of Custody	Pageof		
Overland Park, KS 66210 Report to: Jason Franks Project Description: Evergy - Montrose Generating Station City/State Collected:			Overland Park, KS 66210 Email To: jfranks@scsengineers.com;jay.martin@evergy.c				res								MT JULIET, TN 12065 Lebanon Rd Mount Juliet, TN 37122		
			T	Circle:	E-NoPr								Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms (Conditions found at: https://info.pacelabs.com/hubfs/pas-standard-terms.pdf				
Phone: 913-681-0030		Client Project # 27213168.22-A			Lab Project # AQUAOPKS-MONTROS		SmIHDPE-NoP	250mIHDPE-HN03							SDG# 4/892960 K134		
Collected by (print): Matt Variable Petter	Site/Facility ID #			P.O.#			12	IHDPE	loPres						Acctnum: AQUAOPKS		
Matt Vander Petter Collected by (signature): Matt Um Stalle	Next Day 5 Day (Rad 0		Day				, F, SO4)	- 6010 250m	250mlHDPE-NoPres						Prelogin: P922	mplate: T166717 elogin: P922355	
Immediately Packed on Ice N Y ✓				Date Result	Date Results Needed		Anions (Cld,				sell in			PM: 206 - Jeff PB:			
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	\nion	B, Ca	TDS 2						Shipped Via: Fe	Sample # (lab only)	
/W-506	Grub	GW		5/10/22	1140	3	X	X	X				44			-0)	
MW-506 MS/MSD	Grab	GW		5/10/22	The second secon	3	X	X	Х							de	
DUPLICATE	Grab	GW		5/10/32	1140	3	Х	Х	Х							63	
			1,12					- 9									
	Lite of State of the State of			Child Bankston		- 1											
	100000000							1			-2-14						
		- Fred Sec.						14									
											2.2 00						
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater						Flow Other B				COC Si	Sample Receipt Checklist COC Seal Present/Intact: NP Y N COC Signed/Accurate: Y N Bottles arrive intact: Y N Correct bottles used: Y N Sufficient volume sent: Y N If Applicable VOA Zero Headspace: Y N						
- Cutter		Iples returned via: UPSFedExCourier Tracking # 5671 5324 7166												Suffic VOA Ze			
Pelinquished by: (Signature) Date: 05/16/2		Time: Received by: (Signatu							Trin Blank Bessived: Was / No				Preservation Correct/Checked: Y N RAD Screen <0.5 mR/hr: Y N				
Relinquished by : (Signature) Date:		Time: Received by: (Signature)							Temp: Dicas °C Bottles Received:			If preservation required by Login: Date/Time					
elinquished by : (Signature) Date:		Time:	Receive	Received for lab by: (Signatu					Date: Time: 5/11/2 090		Hold:		Condition: NCF / OK)				

Pace Analytical® ANALYTICAL REPORT

June 27, 2022

Revised Report

SCS Engineers - KS

Sample Delivery Group: L1494160

Samples Received: 05/11/2022

Project Number: 27213168.22-A

Description: Evergy - Montrose Generating Station

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb lan

Entire Report Reviewed By:

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-602 L1494160-01	5
MW-603 L1494160-02	6
MW-604 L1494160-03	7
MW-605 L1494160-04	8
DUPLICATE L1494160-05	9
MW-601 L1494160-06	10
Qc: Quality Control Summary	11
Gravimetric Analysis by Method 2540 C-2011	11
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010D	14
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

SAMPLE SUMMARY

			Collected by	Collected date/time	Pacaivad dat	ta/tima
MW-602 L1494160-01 GW			B. Coleman	05/10/22 12:45	Received date/time 05/11/22 09:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1865300	1	05/17/22 16:59	05/17/22 19:15	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1874222	1	06/04/22 19:50	06/04/22 19:50	LBR	Mt. Juliet, Ti
Wet Chemistry by Method 9056A	WG1874222	50	06/04/22 20:06	06/04/22 20:06	LBR	Mt. Juliet, Ti
Metals (ICP) by Method 6010D	WG1866298	1	05/19/22 22:12	05/20/22 18:41	ZSA	Mt. Juliet, Ti
			Collected by	Collected date/time	Received dat	te/time
MW-603 L1494160-02 GW			B. Coleman	05/10/22 14:45	05/11/22 09:3	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1865300	1	05/17/22 16:59	05/17/22 19:15	MMF	Mt. Juliet, T
Net Chemistry by Method 9056A	WG1874222	10	06/04/22 20:22	06/04/22 20:22	LBR	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1874222	100	06/04/22 20:38	06/04/22 20:38	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1866298	1	05/19/22 22:12	05/20/22 18:44	ZSA	Mt. Juliet, TI
			Collected by	Collected date/time	Received dat	te/time
MW-604 L1494160-03 GW			B. Coleman	05/10/22 14:15	05/11/22 09:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
2			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1865300	1	05/17/22 16:59	05/17/22 19:15	MMF	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1874222	10	06/04/22 20:54	06/04/22 20:54	LBR	Mt. Juliet, T
Vet Chemistry by Method 9056A	WG1874222	100	06/04/22 21:10	06/04/22 21:10	LBR	Mt. Juliet, T
Metals (ICP) by Method 6010D	WG1866298	1	05/19/22 22:12	05/20/22 17:37	ZSA	Mt. Juliet, Ti
			Collected by	Collected date/time	Received dat	te/time
MW-605 L1494160-04 GW			B. Coleman	05/10/22 14:29	05/11/22 09:3	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1865300	1	05/17/22 16:59	05/17/22 19:15	MMF	Mt. Juliet, Ti
Vet Chemistry by Method 9056A	WG1874222	10	06/04/22 21:26	06/04/22 21:26	LBR	Mt. Juliet, TI
Vet Chemistry by Method 9056A	WG1874222	100	06/04/22 21:42	06/04/22 21:42	LBR	Mt. Juliet, TI
Metals (ICP) by Method 6010D	WG1866298	1	05/19/22 22:12	05/20/22 18:47	ZSA	Mt. Juliet, T
			Collected by	Collected date/time	Received dat	te/time
DUPLICATE L1494160-05 GW			B. Coleman	05/10/22 00:00	05/11/22 09:3	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011		4	date/time 05/17/22 16:59	date/time	14145	M4 Juliat T
JUDINI PROPERTY AND A PROPERTY OF THE PROPERTY	MC10CE200		UD/1//// 10:59	05/17/22 19:15		
	WG1865300	1		06/04/22 22:20	MMF	
Vet Chemistry by Method 9056A	WG1874222	10	06/04/22 22:29	06/04/22 22:29	LBR	Mt. Juliet, T
Vet Chemistry by Method 9056A Vet Chemistry by Method 9056A	WG1874222 WG1874222	10 100	06/04/22 22:29 06/04/22 22:45	06/04/22 22:45	LBR LBR	Mt. Juliet, Ti Mt. Juliet, Ti
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A	WG1874222	10	06/04/22 22:29		LBR	Mt. Juliet, T Mt. Juliet, T
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Metals (ICP) by Method 6010D	WG1874222 WG1874222	10 100	06/04/22 22:29 06/04/22 22:45 05/19/22 22:12 Collected by	06/04/22 22:45 05/20/22 18:50 Collected date/time	LBR LBR ZSA	Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Metals (ICP) by Method 6010D MW-601 L1494160-06 GW	WG1874222 WG1874222 WG1866298	10 100 1	06/04/22 22:29 06/04/22 22:45 05/19/22 22:12 Collected by B. Coleman	06/04/22 22:45 05/20/22 18:50 Collected date/time 05/10/22 11:10	LBR LBR ZSA Received dat 05/11/22 09:3	Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T te/time
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Metals (ICP) by Method 6010D WW-601 L1494160-06 GW	WG1874222 WG1874222	10 100	06/04/22 22:29 06/04/22 22:45 05/19/22 22:12 Collected by	06/04/22 22:45 05/20/22 18:50 Collected date/time	LBR LBR ZSA	Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Wetals (ICP) by Method 6010D MW-601 L1494160-06 GW Method	WG1874222 WG1874222 WG1866298	10 100 1	06/04/22 22:29 06/04/22 22:45 05/19/22 22:12 Collected by B. Coleman	06/04/22 22:45 05/20/22 18:50 Collected date/time 05/10/22 11:10 Analysis	LBR LBR ZSA Received dat 05/11/22 09:3	Mt. Juliet, TI Mt. Juliet, TI Mt. Juliet, TI te/time 30
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Wetals (ICP) by Method 6010D MW-601 L1494160-06 GW Method Gravimetric Analysis by Method 2540 C-2011	WG1874222 WG1874222 WG1866298 Batch	10 100 1	06/04/22 22:29 06/04/22 22:45 05/19/22 22:12 Collected by B. Coleman Preparation date/time	06/04/22 22:45 05/20/22 18:50 Collected date/time 05/10/22 11:10 Analysis date/time	LBR LBR ZSA Received dat 05/11/22 09:3	Mt. Juliet, TI Mt. Juliet, TI Mt. Juliet, TI te/time Location Mt. Juliet, TI
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Metals (ICP) by Method 6010D MW-601 L1494160-06 GW Method Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A	WG1874222 WG1874222 WG1866298 Batch	10 100 1 Dilution	06/04/22 22:29 06/04/22 22:45 05/19/22 22:12 Collected by B. Coleman Preparation date/time 05/17/22 16:59	06/04/22 22:45 05/20/22 18:50 Collected date/time 05/10/22 11:10 Analysis date/time 05/17/22 19:15	LBR LBR ZSA Received dat 05/11/22 09:3 Analyst	30

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Level II Report - Version 1: 06/06/22 16:56

Project Narrative

Jeff Carr Project Manager

This report has been revised by reporting to the MDLs.

up lan

Collected date/time: 05/10/22 12:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	1680000	<u>J3</u>	20000	1	05/17/2022 19:15	WG1865300

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	4220		379	1000	1	06/04/2022 19:50	WG1874222
Fluoride	120	J	64.0	150	1	06/04/2022 19:50	WG1874222
Sulfate	1070000		29700	250000	50	06/04/2022 20:06	WG1874222

Sr

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	4050		20.0	200	1	05/20/2022 18:41	WG1866298
Calcium	302000		79.3	1000	1	05/20/2022 18:41	WG1866298

Collected date/time: 05/10/22 14:45

1494160

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	2430000		50000	1	05/17/2022 19:15	WG1865300

²Tc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	7230	J	3790	10000	10	06/04/2022 20:22	WG1874222
Fluoride	912	<u>J</u>	640	1500	10	06/04/2022 20:22	WG1874222
Sulfate	1810000		59400	500000	100	06/04/2022 20:38	WG1874222

Ss

Cn

⁵Sr

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	5230		20.0	200	1	05/20/2022 18:44	WG1866298
Calcium	366000		79.3	1000	1	05/20/2022 18:44	WG1866298

Collected date/time: 05/10/22 14:15

L1494160

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	1940000		50000	1	05/17/2022 19:15	WG1865300

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	16900		3790	10000	10	06/04/2022 20:54	WG1874222
Fluoride	691	J	640	1500	10	06/04/2022 20:54	WG1874222
Sulfate	2000000		59400	500000	100	06/04/2022 21:10	WG1874222

Cn

⁵Sr

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	5790	<u>O1</u>	20.0	200	1	05/20/2022 17:37	WG1866298
Calcium	478000	O1 V	79.3	1000	1	05/20/2022 17:37	WG1866298

Collected date/time: 05/10/22 14:29

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	2010000		50000	1	05/17/2022 19:15	WG1865300

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	16300		3790	10000	10	06/04/2022 21:26	WG1874222
Fluoride	765	<u>J</u>	640	1500	10	06/04/2022 21:26	WG1874222
Sulfate	2000000		59400	500000	100	06/04/2022 21:42	WG1874222

Cn

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	5760		20.0	200	1	05/20/2022 18:47	WG1866298
Calcium	482000		79.3	1000	1	05/20/2022 18:47	WG1866298

8 of 20

DUPLICATE

SAMPLE RESULTS - 05

Collected date/time: 05/10/22 00:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	2430000		50000	1	05/17/2022 19:15	WG1865300

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	16100		3790	10000	10	06/04/2022 22:29	WG1874222
Fluoride	778	J	640	1500	10	06/04/2022 22:29	WG1874222
Sulfate	1960000		59400	500000	100	06/04/2022 22:45	WG1874222

³Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	5790		20.0	200	1	05/20/2022 18:50	WG1866298
Calcium	482000		79.3	1000	1	05/20/2022 18:50	WG1866298

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 05/10/22 11:10

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Dissolved Solids	4680000		10000	1	05/17/2022 19:15	WG1865300	

Sample Narrative:

L1494160-06 WG1865300: In hold results confirmed by OOH analysis.

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	39800		3790	10000	10	06/04/2022 23:01	WG1874222
Fluoride	779	J	640	1500	10	06/04/2022 23:01	WG1874222
Sulfate	3160000		59400	500000	100	06/04/2022 23:17	WG1874222

Cn

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	128	J	20.0	200	1	05/23/2022 02:52	WG1866943
Calcium	439000		79.3	1000	1	05/23/2022 02:52	WG1866943

GI

10 of 20

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1494160-01,02,03,04,05,06

Method Blank (MB)

(MB) R3793593-1 05/17/22 19:15

,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	П		10000	10000

L1493470-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1493470-02 05/17/22 19:15 • (DUP) R3793593-3 05/17/22 19:15

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	199000	136000	1	37.6	.13	5

[†]Cn

L1494160-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1494160-01 05/17/22 19:15 • (DUP) R3793593-4 05/17/22 19:15

(00) 2110 1100 01 00, 11, 122	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1680000	1530000	1	9.33	<u>J3</u>	5

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3793593-2 05/17/22 19:15

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	2460000	2510000	102	81 7-118	

QUALITY CONTROL SUMMARY

L1494160-01,02,03,04,05,06

Wet Chemistry by Method 9056A

Method Blank (MB)

2 10:29

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Fluoride	U		64.0	150
Sulfate	П		594	5000

(OS) L1493603-01 06/04/22 15:20 • (DUP) R3799968-3 06/04/22 15:36

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	6130	6100	1	0.365		15
Fluoride	153	154	1	0.391		15
Sulfate	13900	13900	1	0.394		15

(OS) L1493603-09 06/04/22 23:33 • (DUP) R3799968-6 06/04/22 23:49

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	6110	6110	1	0.123		15
Fluoride	153	152	1	0.786		15
Sulfate	13900	13900	1	0.0519		15

Laboratory Control Sample (LCS)

(I CS) P3799968-2 06/04/22 10:45

(LCS) NS733300-2 00/0	(LCS) NS7 33300-2 00/04/22 10.43										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	ug/l	ug/l	%	%							
Chloride	40000	40200	101	80.0-120							
Fluoride	8000	8180	102	80.0-120							
Sulfate	40000	40000	100	80 0-120							

PAGE:

12 of 20

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1494160-01,02,03,04,05,06

L1493603-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1493603-01 06/04/22 15:20 • (MS) R3799968-4 06/04/22 16:23 • (MSD) R3799968-5 06/04/22 16:39

(,	,			(
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	6130	56700	56800	101	101	1	80.0-120			0.0876	15
Fluoride	5000	153	5190	5180	101	101	1	80.0-120			0.00771	15
Sulfate	50000	13900	63600	63600	99.5	99.4	1	80.0-120			0.142	15

Ср

(OS) L1493603-09 06/04/22 23:33 • (MS) R3799968-7 06/05/22 00:05

(/		,				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits
Analyte	ug/l	ug/l	ug/l	%		%
Chloride	50000	6110	56500	101	1	80.0-120
Fluoride	5000	153	5160	100	1	80.0-120
Sulfate	50000	13900	63700	99.6	1	80.0-120

PAGE:

13 of 20

DATE/TIME:

06/27/22 16:21

QUALITY CONTROL SUMMARY

L1494160-01,02,03,04,05

Method Blank (MB)

Metals (ICP) by Method 6010D

(MB) R3794633-1 05/20/22 17:31 MB RDL MB Result MB Qualifier MB MDL Analyte ug/l ug/l ug/l Boron U 20.0 200 U 79.3 1000 Calcium

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3794633-2 05/20	CS) R3794633-2 05/20/22 17:34									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	ug/l	ug/l	%	%						
Boron	1000	990	99.0	80.0-120						
Calcium	10000	9670	96.7	80.0-120						

L1494160-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) E1737100-03 V3/20/22 17.37 V (MIS) NOT 34035-4 V3/20/22 17.45 V (MIS) V (T-40)												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	5790	6610	6610	82.4	82.0	1	75.0-125			0.0607	20
Calcium	10000	478000	475000	478000	0.000	3 70	1	75 0-125	V	V	0.687	20

QUALITY CONTROL SUMMARY

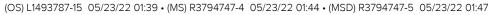
L1494160-06

Method Blank (MB)

Metals (ICP) by Method 6010D

(MB) R3794747-1 05	5/23/22 01:34			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200
Calcium	U		79.3	1000

Laboratory Control Sample (LCS)


(LCS) R3794747-2 05/23/	CS) R3794747-2 05/23/22 01:36									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	ug/l	ug/l	%	%						
Boron	1000	937	93.7	80.0-120						
Calcium	10000	9400	94.0	80.0-120						

L1493787-15 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(03) [1433707 13 03/23/2	(00) E1435101 13 03/25/22 01.33 - (M3) N3/34747 4 03/25/22 01.44 - (M3D) N3/34747 3 03/25/22 01.47											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	309	1240	1240	93.4	93.1	1	75.0-125			0.291	20
Calcium	10000	78200	86400	86400	81.8	81.2	1	75.0-125			0.0750	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: 27213168.22-A L1494160 06/27/22 16:21 SCS Engineers - KS 16 of 20

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

DATE/TIME:

06/27/22 16:21

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

ompany Name/Address:			Billing Infor	rmation:				-		A	palvsis / Cor	ntainer	Preservative	-	0000000	Chain of Custo	by Page Cof	2		
CS Engineers - KS 575 W. 110th Street overland Park, KS 66210			8575 W.	s Payable 110th Str d Park, KS	reet		Pres Chk										O ACE" LE ADVANCING SCIENCE			
eport to: ason Franks		1	Email To: jfranks@sc	csengineers	.com;jay.n	nartin@eve	ergy.c	oPres								12065 Lebenon 8d 1 Submitting a sample	OULIET, TN Against Julies, TN 37322 via this chain of custody adgment and acceptance of the companies of th			
roject Description: evergy - Montrose Generating Station		City/State Collected:		Se M	0	Please Cir. PT MT CI										Pace Terms and Con	Sitions found at: .com/hubfs/pas-standard-			
hone: 913-681-0030	27213168			AQUAC		NTROSE		125mlHDPE-N	250miHDPE-HNO3	15						SDG#	92956			
silected by (print): Site/Facilit		/Facility ID # P		P.O.#			P.O.#			504) 125	HDP	NoPre						Acctnum: AC		7
ollected by (signature):	Same Next I	Day 5 Da	Day		Results No	eeded	No.	(Cld, F,	6010 250n	250miHDPE-NoPres						Prelogin: P9 PM: 206 - Jef PB:	22356			
Sample ID	Three	T	Depth	Dat	te	Time	Of	Anions	В, Са-	TDS 25						Shipped Via:	FedEX Ground Sample # (lab on)	HAUSES.		
NW-601	Char	GW	-	15/10/	11 1	011	0	X	X	Х						- P				
nw-602		GW		1	1	1245	1	X	X	X							1-11			
nW-603		GW			1	1449	3	X	X	X							-12	ì		
tW-604		GW			1	419	3	X	X	X							-13			
AW-605		GW				425	1	X	X	X							-14			
MS / MSD		GW			1	是一个	113	X	X	X							-13			
DUPLICATE	1	GW	1	1		hery	13/	X	X	X							-15			
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:	1	1	1					1		pH		Temp	_ s	COC Seal COC Signe Bottles	mple Receipt Present/Intac ed/Accurate: arrive intact: bottles used:	T. AND Y	N N N		
DW - Drinking Water OT - Other	Samples returnUPSFed	ed via: ExCourie	,		Tracking	#		5	719	7	6180		7054		VOA Zero	If Application Correct/o	able	N		
Relinquished by : (Signature)	1	Date: 5/10/2	2 Tim	130	Received	l by: (Signat	ture)				Trip Blank F		(HCL) Me TBR		RAD Scre	en <0.5 mR/hr		N		
Relinquished by (Signature)		Date:	Tim	e:	Received	l by: (Signat	ture)				Temp: JA	A7°C	Bottles Received	red:		tion required by	ogin: Date/Time			
Relinquished by : (Signature)		Date:	Tim	ne:	1000000000	for lab by:	(Signat	ture			5/11/2	12	7ime: 093	0	Hold:		(Condition: (NCF) / OK			

11444160

HM) Hailey Melson (responsible) AV Andy Vann 🚾 Jeffrey A. Carr	H
Due on 16 May 2022 8:00 AM for target Done	
Login Clarification needed Chain of custody is incomplete	
Please specify Metals requested Please specify TCLP requested	
Received additional samples not listed on COC	
Sample IDs on containers do not match IDs on COC	
Chain of Custody is missing	
If no COC: Received by:	
If no COC: Date/Time:	
] If no COC: Temp./Cont.Rec./pH:	
If no COC: Carrier:	
Client informed by call	
Client informed by Email	
Client informed by Voicemail	
Date/Time:	
PM initials:	
Client Contact:	
Comments	
Hailey Melson	12 May 2022 7:41 PM
Did not receive ID: MW-601	
Jeffrey A. Carr	13 May 2022 10:27 AM
MW-601 was logged to L1492460-03. (Refer to NCF for L1492460)	07
This needs to be re-labeled and moved to L1492956.	1
Hailey Melson	14 May 2022 9:31 PM
Done	

AQUAOPKS L1492956-11 thru -16 Relog to a separate SDG

R5

Please relog AQUAOPKS samples L1492956-11 thru -16 to a separates SDG. All products have been removed.

Jeffrey A. Carr (615) 758-5858 l Ext. 9667 12065 Lebanon Road I Mt. Juliet, TN 37122 Pace National Project Manager II

Jeffrey.Carr@pacelabs.com<mailto:Jeffrey.Carr@pacelabs.com> pacenational.comhttps://pacenational.com/>

Please update your records accordingly. New email address is Jeffrey.Carr@pacelabs.com<mailto:Jeffrey.Carr@pacelabs.com>

MAKE YOUR PAYMENTS ONLINE<file://filesrv/users\$/carr_j/My%2oDocuments/Adobe>

and delete any copies. others is strictly prohibited. If you are not the intended recipient, please contact the sender immediately legally protected information and are for the sole use of the addressee(s). Any review or distribution by NOTICE -- The contents of this email and any attachments may contain confidential, privileged, and/or

P Please consider the environment before printing this email

Time estimate: oh Time spent: oh

Members

Jac Jeffrey A. Carr (responsible)

Pace Analytical® ANALYTICAL REPORT

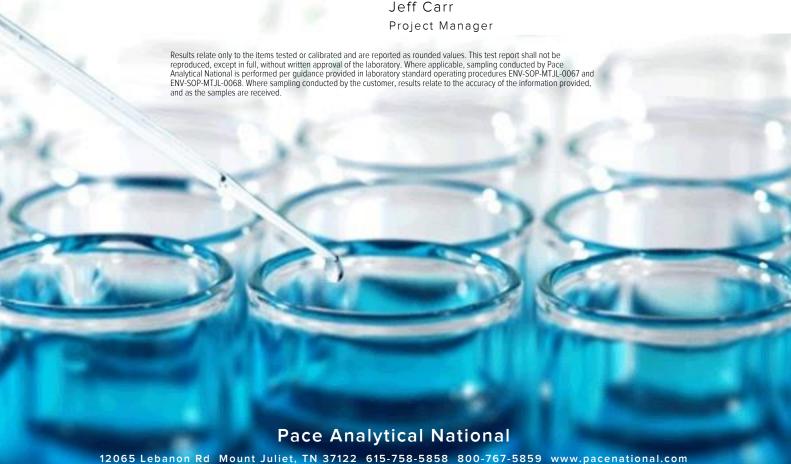
SCS Engineers - KS

Sample Delivery Group: L1515065 Samples Received: 07/14/2022

Project Number: 27213168.22-F

Description: Evergy Montrose Gen Station LF GW 2022-23

Report To: Jason Franks


8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jeff Carr

Tubb law

TABLE OF CONTENTS

Cp: Cover Page							
Tc: Table of Contents	2						
Ss: Sample Summary	3						
Cn: Case Narrative	4						
Sr: Sample Results	5						
MW-506 L1515065-01	5						
MW-601 L1515065-02	6						
MW-602 L1515065-03	7						
MW-603 L1515065-04	8						
MW-604 L1515065-05	9						
DUPLICATE 1 L1515065-06	10						
MW-605 L1515065-07	11						
DUPLICATE 2 L1515065-08	12						
Qc: Quality Control Summary	13						
Wet Chemistry by Method 9056A	13						
Metals (ICP) by Method 6010D	15						
GI: Glossary of Terms	17						
Al: Accreditations & Locations	18						
Sc: Sample Chain of Custody	19						

SAMPLE SUMMARY

			Callantad by	Callantad data hima	Decesional de	A = /45.00 =
MW-506 L1515065-01 GW			Collected by A Thompson	Collected date/time 07/13/22 12:55	Received da 07/14/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1898953	1	07/22/22 01:54	07/22/22 01:54	LBR	Mt. Juliet, TN
MW-601 L1515065-02 GW			Collected by A Thompson	Collected date/time 07/13/22 12:05	Received da 07/14/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Vet Chemistry by Method 9056A	WG1898953	1	07/22/22 02:07	07/22/22 02:07	LBR	Mt. Juliet, TN
MW-602 L1515065-03 GW			Collected by A Thompson	Collected date/time 07/13/22 10:45	Received da 07/14/22 09:	
M ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1898953	1	07/22/22 02:20	07/22/22 02:20	LBR	Mt. Juliet, TN
MW-603 L1515065-04 GW			Collected by A Thompson	Collected date/time 07/13/22 11:40	Received da 07/14/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Vet Chemistry by Method 9056A	WG1898953	1	07/22/22 02:45	07/22/22 02:45	LBR	Mt. Juliet, TN
MW-604 L1515065-05 GW			Collected by A Thompson	Collected date/time 07/13/22 12:34	Received da 07/14/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Net Chemistry by Method 9056A Metals (ICP) by Method 6010D	WG1898953 WG1900448	1	07/22/22 03:23 07/27/22 20:01	07/22/22 03:23 07/28/22 19:00	LBR ZSA	Mt. Juliet, TN Mt. Juliet, TN
DUPLICATE1 L1515065-06 GW			Collected by A Thompson	Collected date/time 07/13/22 12:44	Received da 07/14/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Metals (ICP) by Method 6010D	WG1898953 WG1900448	1	07/22/22 04:01 07/27/22 20:01	07/22/22 04:01 07/28/22 19:04	LBR ZSA	Mt. Juliet, TN Mt. Juliet, TN
MW-605 L1515065-07 GW			Collected by A Thompson	Collected date/time 07/13/22 13:25	Received da 07/14/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Vet Chemistry by Method 9056A Metals (ICP) by Method 6010D	WG1898953 WG1900514	1 1	07/22/22 04:14 07/28/22 18:25	07/22/22 04:14 07/29/22 01:12	LBR CCE	Mt. Juliet, TN Mt. Juliet, TN
DUPLICATE 2 L1515065-08 GW			Collected by A Thompson	Collected date/time 07/13/22 13:35	Received da 07/14/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Metals (ICP) by Method 6010D	WG1898953 WG1900448	1 1	07/22/22 04:52 07/27/22 20:01	07/22/22 04:52 07/28/22 19:07	LBR ZSA	Mt. Juliet, TN Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jeff Carr Project Manager

up lan

SAMPLE RESULTS - 01

Collected date/time: 07/13/22 12:55

L1515065

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Fluoride	84.4	J	64.0	150	1	07/22/2022 01:54	WG1898953

SAMPLE RESULTS - 02

Collected date/time: 07/13/22 12:05

L1515065

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Fluoride	266		64.0	150	1	07/22/2022 02:07	WG1898953	

SAMPLE RESULTS - 03

Collected date/time: 07/13/22 10:45

L1515065

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Fluoride	118	J P1	64.0	150	1	07/22/2022 02:20	WG1898953	

SAMPLE RESULTS - 04

Collected date/time: 07/13/22 11:40

	-							
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Chloride	6640	В	379	1000	1	07/22/2022 02:45	WG1898953	
Fluoride	404		64.0	150	1	07/22/2022 02:45	WG1898953	

SAMPLE RESULTS - 05

Collected date/time: 07/13/22 12:34

L1515065

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	17400		379	1000	1	07/22/2022 03:23	WG1898953
Fluoride	336		64.0	150	1	07/22/2022 03:23	WG1898953

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	5580		20.0	200	1	07/28/2022 19:00	WG1900448

DUPLICATE 1

SAMPLE RESULTS - 06

Collected date/time: 07/13/22 12:44

L1515065

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	17300		379	1000	1	07/22/2022 04:01	WG1898953
Fluoride	323		64.0	150	1	07/22/2022 04:01	WG1898953

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	5550		20.0	200	1	07/28/2022 19:04	WG1900448

Analyte

Calcium

Boron

SAMPLE RESULTS - 07

Collected date/time: 07/13/22 13:25

Metals (ICP) by Method 6010D

Result

ug/l

1540

434000

Qualifier

MDL

ug/l

20.0

79.3

Dilution

1

Analysis

date / time

07/29/2022 01:12

07/29/2022 01:12

Batch

WG1900514

WG1900514

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Fluoride	160		64.0	150	1	07/22/2022 04:14	WG1898953

RDL

ug/l

200

1000

DUPLICATE 2

SAMPLE RESULTS - 08

Collected date/time: 07/13/22 13:35

L1515065

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Fluoride	170		64.0	150	1	07/22/2022 04:52	WG1898953

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	1600		20.0	200	1	07/28/2022 19:07	WG1900448
Calcium	450000		79.3	1000	1	07/28/2022 19:07	WG1900448

QUALITY CONTROL SUMMARY

L1515065-01,02,03,04,05,06,07,08

Method Blank (MB)

Wet Chemistry by Method 9056A

(MB) R3818475-1 07/22/2	2 00:50				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Chloride	703	<u>J</u>	379	1000	
Fluoride	U		64.0	150	

Ср

³Ss

(OS) L1515065-03 07/22/22 02:20 • (DUP) R3818475-3 07/22/22 02:32

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	4370	3920	1	10.8		15
Fluoride	118	167	1	34.9	P1	15

(OS) L1515302-02 07/22/22 08:42 • (DUP) R3818475-16 07/22/22 08:54

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	2870	2820	1	1.80		15
Fluoride	96.6	94.7	1	1.99	<u>J</u>	15

Al

Laboratory Control Sample (LCS)

(LCS) R3818475-2 07/22/22 01:03

(LC3) K3010473-2 077227	C3) K301047 3-2 07/22/22 01:03										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	ug/l	ug/l	%	%							
Chloride	40000	40500	101	80.0-120							
Fluoride	8000	8520	106	80.0-120							

L1515065-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1515065-05 07/22/22 03:23 • (MS) R3818475-4 07/22/22 03:36 • (MSD) R3818475-5 07/22/22 03:49

(OS) E1313003-03 07/22/22 03.23 • (MS) R3010473-4 07/22/22 03.30 • (MSD) R3010473-3 07/22/22 03.43												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	17400	66700	66800	98.7	99.0	1	80.0-120			0.185	15
Fluoride	5000	336	4970	4940	92.6	92.1	1	80.0-120			0.583	15

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1515065-01,02,03,04,05,06,07,08

L1515065-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1515065-07 07/22/22 04:14 • (MS) R3818475-6 07/22/22 04:27 • (MSD) R3818475-7 07/22/22 04:40

(/	(
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Chloride	50000	38300	86500	87600	96.4	98.5	1	80.0-120			1.21	15	
Fluoride	5000	160	4500	4600	86.8	88.8	1	80.0-120			2.16	15	

L1515205-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1515205-01_07/22/22_05:05 • (MS) R3818475-8_07/22/22_05:18 • (MSD) R3818475-9_07/22/22_05:56

(00) E1010200 01 01122122 00.00 (1110) 10010 110 0 01122122 00.00												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	391000	423000	422000	64.7	61.5	1	80.0-120	<u>E V</u>	<u>E V</u>	0.380	15
Fluoride	5000	269	5160	5150	97.8	97.5	1	80.0-120			0.229	15

L1515205-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1515205-02 07/22/22 06:09 • (MS) P3818475-10 07/22/22 06:22 • (MSD) P3818475-11 07/22/22 06:34

(O3) LI3I32O3-02 O7/22	/22 00.09 • (IVIS) K30104/3-10	07/22/22 00.	22 • (IVI3D) K30	104/3-11 0//22	2/22 00.34						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	346000	380000	383000	66.9	73.6	1	80.0-120	EV	EV	0.880	15
Fluoride	5000	321	5520	5590	104	105	1	80.0-120			1.23	15

L1515205-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1515205-04 07/22/22 07:25 • (MS) R3818475-14 07/22/22 07:38 • (MSD) R3818475-15 07/22/22 07:51

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	330000	364000	365000	67.8	69.9	1	80.0-120	<u>E V</u>	<u>E V</u>	0.297	15
Fluoride	5000	477	5710	5750	105	105	1	80.0-120			0.735	15

QUALITY CONTROL SUMMARY

L1515065-05,06,08

Method Blank (MB)

Metals (ICP) by Method 6010D

(MB) R3820416-6 07/28/22 18:14 MB RDL MB Result MB Qualifier MB MDL Analyte ug/l ug/l ug/l Boron U 20.0 200 U 79.3 1000 Calcium

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3820416-7 07/28/22 18:17 Spike Amount LCS Result LCS Rec. Rec. Limits LCS Qualifier % % Analyte ug/l ug/l Boron 1000 996 99.6 80.0-120 10000 10000 100 Calcium 80.0-120

GI

L1515046-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1515046-05 07/28/22 18:20 • (MS) R3820416-9 07/28/22 18:25 • (MSD) R3820416-10 07/28/22 18:28

(O3) LI313040-03 07/20/	22 10.20 • (1013)	K3020410-9 C	11120122 10.23) • (IVISD) KS62(J 4 10-10 07/20	122 10.20						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	88.1	1110	1100	102	102	1	75.0-125			0.626	20
Calcium	10000	171000	179000	178000	80.1	74.1	1	75.0-125		V	0.337	20

QUALITY CONTROL SUMMARY

L1515065-07

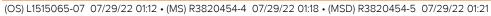
Metals (ICP) by Method 6010D Method Blank (MB)

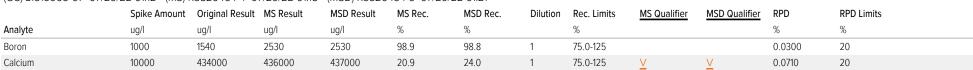
(MB) R3820454-1 07	7/29/22 01:06			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200
Calcium	U		79.3	1000

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3820454-2 07/29	/22 01:09				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	1010	101	80.0-120	
Calcium	10000	9990	99.9	80.0-120	




GI

L1515065-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
Qualifier	Describtion

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

ompany Name/Address:		Billing Information:							Analysis / Container / Preservative Chain of Custody Page of											
0575 W 440th Street			Account 8575 W.	-			Pres Chk	3	3								B			
			Overland Park, KS 66210													PEOPLE ADVANCING SCIENCE				
Report to: Jason Franks	2			Email To: jfranks@scsengineers.com;jay.martin@ever							res						MT JULIET, TN 12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody			
Project Description: City/State Evergy Montrose Gen Station LF GW 2022-23 Collected:			Please Circ PT MT CT				rcle;	3	INO3	-NoPr						constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at: https://info.pacelabs.com/hubfs/pas-standard- terms.odf				
Phone: 913-681-0030	913-681-0030 Client Project # 27213168.22-F					oject # AOPKS-N	MONTROSE		E-HNO	250mIHDPE-HNO3	IHDPE-NoPres	Pres						SDG # C027		
Collected by (print):	Site/Facility ID #			200	P.O. #	#			250mlHDPE-HN03	250ml	e 125ml	DPE-No						Acctnum: AQUAOPKS		
Collected by (signature): Immediately Packed on Ice N Y	Rush? (Lab MUST Be N Same Day Five D Next Day 5 Day 1 Two Day 10 Day Three Day		e Day		Quote # Date Results N		No.	- 6010	Ca - 6010	de, Fluoride	de 125mlHDPE-NoPres				Template:T212738 Prelogin: P937487 PM: 206 - Jeff Carr PB:					
Sample ID	Com	p/Grab	Matrix *	Depth		Date	Time	Cntrs	Boron	Boron,	Chloride,	Fluoride					Shipped Via: Fe	dEX Ground Sample # (lab only		
MW-506	(9)	rate	GW		7/1	3/22	1255	1		247 A.C.		х					e e		- 0	
WW-601			GW			1	1205	1				х							0	
MW-602			GW	- 4		1 46 2 2 3 4 2 3 3 4	1045	1				х						The second second second	-0	
MW-603			GW	3	100	22 28	1140	1			X								-0	
MW-604			GW	1	+		1234	2	X		X								-0	
MW-604 MS/MSD	+		GW		1		1239	2	X		X	\vdash					-		-0	
DUPLICATE 1	H	7.	GW	-	-		1244	2	X		X						-		-0	
MW-605	+		GW	-	+			2	^	Х	^	х							~0	
MW-605 MS/MSD	1		GW		+	1	1325	2		X		X					_		-0	
DUPLICATE 2	+		-		-		1330	722						F9-1						
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater				1335 2					^	X X pH Temp Flow Other			Sample Receipt Checklist COC Seal Present/Intact: NP Y N COC Signed/Accurate: Bottles arrive intact: Correct bottles used: Y N							
OT - Other			_ Courier			Tracking # 5 0 / (a			, 16	230	_					Sufficient volume sent: If Applicable VOA Zero Headspace: Y N				
17/13/22		2 17	7 Time: Received by: (Signatur			1	ž		Trip Blank Received: Yes No HCL / MeoH TBR			RAD Screen <0.5 mR/hr:								
Relinquished by (Signature)			Time: Received by: (Signatu							Temp: MSA2C Bottles Received:			If preservation required by Login: Date/Time							
Relinquished by : (Signature)		Da	ite:	Time	:	Receive	ed for lab by:	(Signati	ure)		[Date:		Time:	1:15	Hold:			Condition: NCF / OK	

Pace Analytical® ANALYTICAL REPORT

August 25, 2022

SCS Engineers - KS

Sample Delivery Group: L1526481 Samples Received: 08/17/2022

Project Number: 27213168.22 - F

Description: Evergy Montrose Gen Station LF GW 2022-23

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jason Romer

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-604 L1526481-01	5
DUPLICATE 1 L1526481-03	6
MW-605 L1526481-04	7
DUPLICATE 2 L1526481-06	8
Qc: Quality Control Summary	9
Wet Chemistry by Method 9056A	9
Metals (ICP) by Method 6010D	10
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-604 L1526481-01 GW			A. Thompson	08/16/22 10:00	08/17/22 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1912781	1	08/20/22 05:32	08/20/22 05:32	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1914319	1	08/23/22 01:38	08/23/22 16:32	ABL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE 1 L1526481-03 GW			A. Thompson	08/16/22 10:05	08/17/22 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1912781	1	08/20/22 06:47	08/20/22 06:47	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1914389	1	08/23/22 20:44	08/24/22 16:19	ABL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-605 L1526481-04 GW			A. Thompson	08/16/22 11:15	08/17/22 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG1914389	1	08/23/22 20:44	08/24/22 15:59	ABL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE 2 L1526481-06 GW			A. Thompson	08/16/22 11:25	08/17/22 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		

WG1914389

Metals (ICP) by Method 6010D

08/23/22 20:44

08/24/22 16:27

ABL

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jason Romer Project Manager

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	17500		379	1000	1	08/20/2022 05:32	WG1912781

Collected date/time: 08/16/22 10:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	5140		20.0	200	1	08/23/2022 16:32	WG1914319

DUPLICATE 1

Analyte

Boron

SAMPLE RESULTS - 03

Collected date/time: 08/16/22 10:05

Metals (ICP) by Method 6010D

Result

ug/l

5270

Qualifier

MDL

ug/l

20.0

Dilution

1

Analysis

date / time

08/24/2022 16:19

Batch

WG1914389

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	17600		379	1000	1	08/20/2022 06:47	WG1912781

RDL

ug/l

200

Ss

MW-605

SAMPLE RESULTS - 04

Collected date/time: 08/16/22 11:15

L1526481

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Calcium	444000		79.3	1000	1	08/24/2022 15:59	WG1914389

DUPLICATE 2

SAMPLE RESULTS - 06

Collected date/time: 08/16/22 11:25

L1526481

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		
Calcium	452000		79.3	1000	1	08/24/2022 16:27	WG1914389	

QUALITY CONTROL SUMMARY

L1526481-01,03

Wet Chemistry by Method 9056A

Method Blank (MB)

		MD Doc
(MB) R3828564-1	08/19/22	23:00

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000

Ss

L1526481-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1526481-01 08/20/22 05:32 • (DUP) R3828564-5 08/20/22 05:45

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	17500	17500	1	0.0696		15

(OS) L1526435-01 08/20/22 02:00 • (DUP) R3828564-3 08/20/22 02:13

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Chloride	93200	91800	1	1.45		15	

Laboratory Control Sample (LCS)

(LCS) R3828564-2 08/19/22 23:13

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	40500	101	80.0-120	

L1526481-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1526481-01 08/20/22 05:32 • (MS) R3828564-6 08/20/22 05:57 • (MSD) R3828564-7 08/20/22 06:10

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	17500	67900	69300	101	104	1	80.0-120			2.06	15

L1526435-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1526435-01 08/20/22 02:00 • (MS) R3828564-4 08/20/22 02:25

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	93200	139000	92.6	1	80.0-120	

QUALITY CONTROL SUMMARY

L1526481-01

Metals (ICP) by Method 6010D

Method Blank (MB)

 (MB) R3829618-1
 08/23/22 16:26

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 ug/l
 ug/l
 ug/l

 Boron
 U
 20.0
 200

Laboratory Control Sample (LCS)

(LCS) R3829618-2 08/23/22 16:29


	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	970	97.0	80.0-120	

Ss

L1526481-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1526481-01 08/23/22 16:32 • (MS) R3829618-4 08/23/22 16:38 • (MSD) R3829618-5 08/23/22 16:41

Calcium

QUALITY CONTROL SUMMARY

L1526481-03,04,06

Method Blank (MB)

Metals (ICP) by Method 6010D

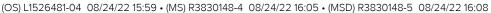
(MB) R3830148-1 08/24/2	2 15:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200
Calcium	U		79.3	1000

[†]Cn

Laboratory Control Sample (LCS)

10000

(LCS) R3830148-2 08/24/	22 15:56				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	997	99.7	80.0-120	
Calcium	10000	10200	102	80.0-120	



L1526481-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

446000

442000

26.9

444000

(OS) L1526481-04 08/24/2	2 15:59 • (MS)	R3830148-4 0	8/24/22 16:05 -	 (MSD) R3830² 	148-5 08/24/2	2 16:08						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	1560	2530	2520	97.2	95.5	1	75.0-125			0.675	20

75.0-125

0.908

20

0.000

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resure ported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical I	National	12065 Lebanon	ı Rd Mount	Juliet TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

DATE/TIME:

08/25/22 12:11

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Collected by (print): Site/F Collected by (signature): R Collected by (signature): R Immediately Packed on Ice N Y	_ Two Day _ Three Day	857 Over	75 W. 1 rerland ail To: inks@scs	Payable 110th Street Park, KS 6621 sengineers.com;ja Lab Project # AQUAOPKS-I P.O. #	PT MT C	rcle:	250mIHDPE-HNO3	250mIHDPE-HNO3	SmiHDPE-NoPres						Submittir constitute Pace Terr	MT JU banon Rd Mo ng a sample vi es acknowlede ms and Condit ifo, pacelabs. or	ACC ADVANCING SCIENCE JLIET, TN unt Juliet, TN 37122 a this chain of custody gment and acceptance of the lons found at: mr/hubfs/pas-standard-
Jason Franks Project Description: Evergy Montrose Gen Station LF GW 2022-23 Phone: 913-681-0030 Collected by (print): Collected by (signature): Immediately Packed on Ice N Y Company Co	Collect Project # L3168.22 - F Facility ID # Rush? (Lab MUS Same Day Next Day Two Day Three Day	ifraite ed: T Be Notificial Five Day 5 Day (Rad	inks@scs	Lab Project # AQUAOPKS-I	Please Ci PT MT C	rcle:	nIHDPE-HNO3	mIHDPE-HNO3	nIHDPE-NoPres						Submittir constitut Pace Terr https://ir terms.pd	banon Rd Mo ng a sample vii es acknowleds ms and Condit ifo.pacelabs.co	unt Juliet, TN 37122 a this chain of custody gment and acceptance of th ions found at: om/hubfs/pas-standard-
Phone: 913-681-0030 Collected by (print): Collected by (signature): Immediately Packed on Ice N Y Company C	Collect Project # L3168.22 - F Facility ID # Rush? (Lab MUS Same Day Next Day Two Day Three Day	ate ed: T Be Notif Five Day 5 Day (Rad	ified)	Lab Project # AQUAOPKS-I P.O. #	Please Ci PT MT C	T ET	nIHDPE-HNO3	mIHDPE-HNO3	nIHDPE-NoPres						Pace Terr https://ir terms.pd	ns and Condit of o. pacelabs. of	lons found at: om/hubfs/pas-standard-
Collected by (print): Site/F Collected by (signature): R Collected by (signature): R Immediately Packed on Ice N Y Company C	Facility ID # Rush? (Lab MUS Same Day Next Day Two Day Three Day	Five Day 5 Day (Rad	d Only)	AQUAOPKS-I	MONTROS	E	NH-DADE-HNC	mIHDPE-HI	mIHDPE-N						SDG #	U5 B	188
Collected by (signature): R Immediately Packed on Ice N Y Sample ID Comp	Sush? (Lab MU: Same Day Next Day Two Day Three Day	Five Day 5 Day (Rad	d Only)				UHDF	mIHI	H								
Immediately Packed on Ice N_ Y Sample ID Comp	_ Same Day _ Next Day _ Two Day _ Three Day	Five Day 5 Day (Rad	d Only)	Quote #			-	0	25r						Acctn	Acctnum: AQUAOPKS	
Packed on Ice N Y Comp	_Three Day	TO Day (Na	IvlaO be	Date Result	s Needed	l No	6010 250	6010 25	- 9056 1						Prelog	ate: T21 gin: P94 06 - Jeff	3623
MW.CO			ad Only)			No. of	1	Ē	ide		-		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PB:		IEV C. I
MW 604	p/Grab Matr	ix * [Depth	Date	Time	Cntrs	Boron	Calcium	Chlorid						1000000	ed Via: Fo	edEX Ground Sample # (lab only)
WW-00-	GI و	v	8/	16 1000	945	2	X		X					26			-01
MW-604 MS/MSD	(e GI	N	2	-8/16	10010	2	X	AL AND	X								-02
DUPLICATE 1	GI	N		8/16	1005	2	X	7	X								-03
MW-605	Cu GI	N	18.50	8/16	1115	1		X		1			44			Z IT	-04
MW-605 MS/MSD	G G	N		8/16	to 200	1		Х					Z 25 7				-05
DUBLICATE 2	Ce G	N		8/16	1025	1		X								7.47	-06
													a.x.				
		Village Services											E a	75	el Progra	, : 1- <u>a</u>	
			W		6 April 6 Apri										190	11/2/07	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater								Flow Other						Sample Receipt Checklist OC Seal Present/Intact: MP Y N OC Signed/Accurate: N ottles arrive intact: N torrect bottles used: N			
OT - Other UPS _	returned via:FedExCo	urier		Tracki			0 4	129		2766	The second secon	. 15	,	OA Zero Preservat	If A	oplicab ce:	leY_N
Relinquished by : (Signature)	Date:	16	Time:	: Receiv	ved by: (Signa	iture)				rip Blank Re	1	BR	iH I	RAD Scree	en <0.5 m	nR/hr:	<u></u>
Relinquished by : (Signature)	Date:		Time	Recei	ved by: (Signa	iture)	0/	1		Temp:	°C Bottl	es Receiv	ed: I	f preservat	ion requir	ed by Lo	gin: Date/Time

Pace Analytical® ANALYTICAL REPORT

November 21, 2022

SCS Engineers - KS

Sample Delivery Group: L1555862

Samples Received: 11/09/2022

Project Number: 27213168.22-A

Description: Evergy Montrose Gen Station LF GW 2022-23

Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Entire Report Reviewed By:

Jeff Carr Project Manager

Tubb law

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-506 L1555862-01	5
DUPLICATE L1555862-02	6
Qc: Quality Control Summary	7
Gravimetric Analysis by Method 2540 C-2011	7
Wet Chemistry by Method 9056A	8
Metals (ICP) by Method 6010D	10
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

SAMPLE SUMMARY

			Collected by	Collected date/time	Received date/time		
MW-506 L1555862-01 GW			Whit Martin	11/08/22 12:25	11/09/22 09:	00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1959436	1	11/15/22 08:54	11/15/22 10:07	MMF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1957815	20	11/12/22 15:26	11/12/22 15:26	LBR	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1957815	5	11/11/22 02:57	11/11/22 02:57	LBR	Mt. Juliet, TN	
Metals (ICP) by Method 6010D	WG1959169	1	11/15/22 00:22	11/16/22 10:58	ABL	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
DUPLICATE L1555862-02 GW			Whit Martin	11/08/22 12:25	11/09/22 09:	00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1959436	1	11/15/22 08:54	11/15/22 10:07	MMF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1957815	20	11/11/22 04:20	11/11/22 04:20	LBR	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1957815	5	11/11/22 04:06	11/11/22 04:06	LBR	Mt. Juliet, TN	

WG1959142

1

11/15/22 15:47

11/18/22 19:11

ZSA

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

PAGE:

4 of 14

Jeff Carr Project Manager

up lan

Collected date/time: 11/08/22 12:25

1555862

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	2260000		50000	1	11/15/2022 10:07	WG1959436

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	85400		1900	5000	5	11/11/2022 02:57	WG1957815
Fluoride	U		320	750	5	11/11/2022 02:57	WG1957815
Sulfate	1730000		11900	100000	20	11/12/2022 15:26	WG1957815

⁴Cn

⁵Sr

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	98.5	<u>J</u>	20.0	200	1	11/16/2022 10:58	WG1959169
Calcium	343000	O1 V	79.3	1000	1	11/16/2022 10:58	WG1959169

DUPLICATE

SAMPLE RESULTS - 02

Collected date/time: 11/08/22 12:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	2190000		50000	1	11/15/2022 10:07	WG1959436

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	85900		1900	5000	5	11/11/2022 04:06	WG1957815
Fluoride	U		320	750	5	11/11/2022 04:06	WG1957815
Sulfate	1620000		11900	100000	20	11/11/2022 04:20	WG1957815

Ss

Sample Narrative:

L1555862-02 WG1957815: DILUTION DUE TO MATRIX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	97.4	J	20.0	200	1	11/18/2022 19:11	WG1959142
Calcium	340000		79.3	1000	1	11/18/2022 19:11	WG1959142

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1555862-01,02

Method Blank (MB)

(MB) R3862450-1	11/15/22 10:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

Ss

L1555546-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1555546-02 11/15/22 10:07 • (DUP) R3862450-3 11/15/22 10:07

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1270000	1350000	1	6.42	J3	5

L1555546-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1555546-03 11/15/22 10:07 • (DUP) R3862450-4 11/15/22 10:07

· ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1640000	1910000	1	15.4	<u>J3</u>	5

Laboratory Control Sample (LCS)

(LCS) R3862450-2 11/15/22 10:07

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8140000	92 5	77 3-123	

QUALITY CONTROL SUMMARY

L1555862-01,02

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R3860319-1	11/11/22 02:30	
	MB Result	MB Qualifi
Analyte	ug/l	

L1555862-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1555862-01 11/11/22 02:57 . (DLIP) P3860319-/ 11/11/22 03:11

(US) L1555862-U1 11/11/22	02:57 • (DUP) F	3860319-4 1	1/11/22 03.	11		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	85400	85200	5	0.184		15
Fluoride	U	U	5	0.000		15

L1555863-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1555863-09 11/11/22 06:51 • (DUP) R3860319-7 11/11/22 07:04

(,						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	26900	27500	1	2.22		15
Fluoride	179	172	1	4.11		15
Sulfate	99400	101000	1	1.91		15

L1555862-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1555862-01 11/12/22 15:26 • (DUP) R3860353-1 11/12/22 15:42

(03) 11333002 01 11/12/22	15.20 - (DOI) 1	(3000333 1 11)	12/22 13	72		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	1730000	1700000	20	1.78		15

Laboratory Control Sample (LCS)

(LCS) R3860319-2	11/11/22	02:44
------------------	----------	-------

(ECS) 1(3000313 2 11/11/2	2 02.44				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	38700	96.8	80.0-120	
Fluoride	8000	7780	97.2	80.0-120	
Sulfate	40000	37900	94.7	80.0-120	

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1555862-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1555862-01 11/11/22 02:57 • (MS) R3860319-5 11/11/22 03:25 • (MSD) R3860319-6 11/11/22 03:39

' '	, ,		,	,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	85400	127000	127000	82.8	83.1	5	80.0-120			0.139	15
Fluoride	5000	U	5040	4960	101	99.1	5	80.0-120			1.69	15
Sulfate	50000	1610000	1550000	1550000	0.000	0.000	5	80.0-120	EV	EV	0.353	15

(OS) L1555863-09 11/11/22 06:51 • (MS) R3860319-8 11/11/22 07:18

(00) 21000000 00 11/11/2	2 00.01 (1110) 11	.0000010 0 11/1	1/22 07.10			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits
Analyte	ug/l	ug/l	ug/l	%		%
Chloride	50000	26900	74600	95.5	1	80.0-120
Fluoride	5000	179	5130	99.0	1	80.0-120
Sulfate	50000	99400	143000	87.4	1	80.0-120

PAGE:

9 of 14

Calcium

QUALITY CONTROL SUMMARY

L1555862-02

Method Blank (MB)

Metals (ICP) by Method 6010D

(MB) R3863186-1 11/18/22 17:51

	MB Result	MB Qualifier	MR MDF	MR KDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200
Calcium	U		79.3	1000

Ss

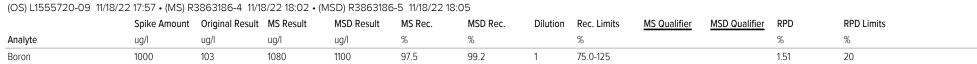
Laboratory Control Sample (LCS)

10000

345000

[†]Cn

(LCS) R3863186-2 11/18/22	2 17:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	997	99.7	80.0-120	
Calcium	10000	10200	102	80.0-120	


L1555720-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

343000

346000

0.000

75.0-125

0.909

20

13.0

ΆΙ

QUALITY CONTROL SUMMARY

L1555862-01

Metals (ICP) by Method 6010D

Method Blank (MB)

(MB) R3861697-1 11/16/	22 10:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200
Calcium	U		79.3	1000

Laboratory Control Sample (LCS)

(LCS) R3861697-2	11/16/22 10:55
------------------	----------------

(LCS) K3601037-2 11/10/22	2 10.55				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	1000	100	80.0-120	
Calcium	10000	10100	101	80.0-120	

L1555862-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) | 1555862 01 11/16/22 10:58 - (MS) D3861607 4 11/16/22 11:04 - (MSD) D3861607 5 11/16/22 11:07

(US) L1555862-U1 11/16/22	10.58 • (IVIS) RS	3861697-4 11/16	5/22 11:U4 • (IVI	5D) K3861697-:	5 11/16/22 11:07	′						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	98.5	1120	1090	102	98.8	1	75.0-125			2.77	20
Calcium	10000	343000	345000	341000	22.1	0.000	1	75 O-125	\/	\/	120	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	Definitions
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description

E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
01	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Dage Applytical National	1206E Lohanan Dd Maunt	Luliat TNL 27122
Pace Analytical National	12065 Lebanon Rd Mount .	Juliet. TN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

EPA-Crypto

TN00003

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	rmation:	•				A	nalvsis	/ Contai	per / Pr	eservati	iye			Chain of Custoo	y Page of
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			8575 W.	s Payable 110th Stre d Park, KS 6		Pres Chk		13									PEOPL	O ACC* LE ADVANCING SCIENCE
Report to: Jason Franks			1		om;jay.martin@ev		oPres										12065 Lebanon Rd M Submitting a sample of constitutes acknowled	ria this chain of custody dgment and acceptance of the
Project Description: Evergy Montrose Gen Station LF GW	2022-23	City/State Collected:	Montro	se, MC	Please Ci	T ET	E-N			4			- '9				Pace Terms and Cond https://info.pacelabs. terms.pdf.	itions found at: .com/hubfs/pas-standard-
Phone: 913-681-0030	Client Proj 2721316	ect#		Lab Project		E	125miHDPE-N	250mlHDPE-HN03							er.		5DG# (3	55562 J087
Collected by (print). Whit Martin	Site/Facilit	y ID #		P.O.#			504) 125	HIHDP	NoPre		9		200				Acctnum: AQ	UAOPKS
Collected by (signature): Machine Machine Immediately	Sam Nex Two		Day		esults Needed	No.	(Cld, F, SC	6010 250r	250mlHDPE-NoPres			,					Prelogin: P95 PM: 206 - Jeff	8827
Packed on Ice N Y Sample ID	Comp/Gr	ab Matrix *	Depth	Date	Time	of Catrs	Anions	B, Ca - 6	TDS 25(edEX Ground Sample # (lat only)
MW-506	Gra	h GW		11/8/2	2 1225	3	X	X	X									171
MW-506 MS/MSD	Gral	BIRTH BUILDING		11/8/2	2 1225	3	X	X	X							8		10
DUPLICÂTE	Gra			11/8/2	1000	3	X	X	X			. 0						1-02
	UTOIT			11010		1			1,5	3								
															100			
											12.5		10 9 5			-		
			-			1		-			-	7 4-			4-1-1			
						TE												2
						1					-			- 100				
Matrix: SS - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay NW - WasteWater	Remarks:		1	•						pH		Temp			COC S	eal Pr igned/ es arr	le Receipt Clesent/Intact Accurate: ive intact: tles used:	necklist : NP Y N N N
DW - Drinking Water DT - Other	Samples return UPS Fed	ned via: dEx Courier		Tr	acking #										VOA Z	ero He	volume sent: If Applicab adspace:	ole Y N
Relinquished by : (Signature)	,	Date:	Time		eceived by: (Signat				1	Trip Blan	nk Recei		HCL / ME	еоН	RAD S	creen	n Correct/Ch <0.5 mR/hr:	ecked: \overrightarrow{z} _N
Relinquished by : (Signature)		Date:	Time	: Re	eceived by: (Signat	ure	1		/	Temp:) "	C Bott	les Recei	ved:	If prese	ervation	required by Lo	gin: Date/Time
Relinquished by : (Signature)		Date:	Time	: Re	eceived for lab by:	Signat	ure)	-1	5	Sate:	1/22	Tim	390	20	Hold:			Condition: NCF / OK

Pace Analytical® ANALYTICAL REPORT

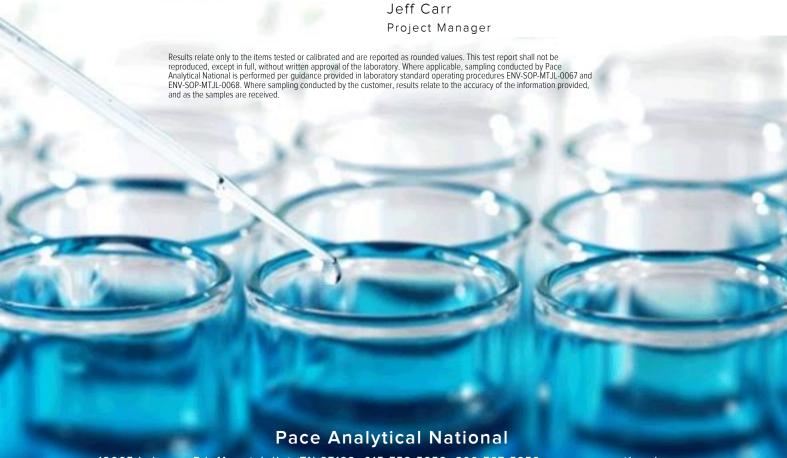
November 22, 2022

SCS Engineers - KS

Sample Delivery Group: L1555864 Samples Received: 11/09/2022

Project Number: 27213168.22-A

Description: Evergy Montrose Gen Station LF GW 2022-23


Report To: Jason Franks

8575 W. 110th Street

Overland Park, KS 66210

Tubb lan

Entire Report Reviewed By:

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-601 L1555864-01	5
MW-602 L1555864-02	6
MW-603 L1555864-03	7
MW-604 L1555864-04	8
MW-605 L1555864-05	9
DUPLICATE L1555864-06	10
Qc: Quality Control Summary	11
Gravimetric Analysis by Method 2540 C-2011	11
Wet Chemistry by Method 9056A	14
Metals (ICP) by Method 6010D	18
GI: Glossary of Terms	20
Al: Accreditations & Locations	21
Sc: Sample Chain of Custody	22

SAMPLE SUMMARY

N.W. 0.04 J.45550.04 04 044			Collected by B. Coleman	Collected date/time 11/08/22 11:35	Received data	
MW-601 L1555864-01 GW Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Wethou	Batch	Dilution	date/time	date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1959791	1	11/15/22 15:32	11/15/22 16:34	DTM	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1958318	10	11/12/22 04:23	11/12/22 04:23	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1958318	100	11/12/22 04:39	11/12/22 04:39	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1959169	1	11/15/22 00:22	11/16/22 11:13	ABL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-602 L1555864-02 GW			B. Coleman	11/08/22 10:55	11/09/22 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1959791	1	11/15/22 15:32	11/15/22 16:34	DTM	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1958664	1	11/14/22 15:15	11/14/22 15:15	GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1958664	10	11/14/22 15:33	11/14/22 15:33	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1959169	1	11/15/22 00:22	11/16/22 11:16	ABL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-603 L1555864-03 GW			B. Coleman	11/08/22 11:40	11/09/22 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1959791	1	11/15/22 15:32	11/15/22 16:34	DTM	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1958664	10	11/14/22 15:51	11/14/22 15:51	GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1958664	100	11/14/22 16:09	11/14/22 16:09	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1959169	1	11/15/22 00:22	11/16/22 11:19	ABL	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-604 L1555864-04 GW			B. Coleman	11/08/22 12:35	11/09/22 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1959964	1	11/15/22 13:20	11/15/22 14:27	SLP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1958664	10	11/14/22 16:27	11/14/22 16:27	GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1958664	100	11/14/22 16:45	11/14/22 16:45	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1959191	1	11/20/22 20:30	11/21/22 19:55	ZSA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-605 L1555864-05 GW			B. Coleman	11/08/22 11:55	11/09/22 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1959967	1	11/15/22 14:34	11/15/22 15:23	SLP	Mt. Juliet. TN
	WG1959967 WG1958664	1 10	11/15/22 14:34 11/14/22 18:32	11/15/22 15:23 11/14/22 18:32	SLP GEB	
Wet Chemistry by Method 9056A	WG1958664	10	11/14/22 18:32	11/14/22 18:32	GEB	Mt. Juliet, TN
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A						Mt. Juliet, TN Mt. Juliet, TN
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A	WG1958664 WG1958664	10 100	11/14/22 18:32 11/14/22 18:50	11/14/22 18:32 11/14/22 18:50	GEB GEB ABL	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Metals (ICP) by Method 6010D	WG1958664 WG1958664	10 100	11/14/22 18:32 11/14/22 18:50 11/15/22 00:22	11/14/22 18:32 11/14/22 18:50 11/16/22 11:27	GEB GEB ABL	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Metals (ICP) by Method 6010D DUPLICATE L1555864-06 GW	WG1958664 WG1958664	10 100	11/14/22 18:32 11/14/22 18:50 11/15/22 00:22 Collected by	11/14/22 18:32 11/14/22 18:50 11/16/22 11:27 Collected date/time	GEB GEB ABL	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Metals (ICP) by Method 6010D DUPLICATE L1555864-06 GW Method	WG1958664 WG1959169	10 100 1	11/14/22 18:32 11/14/22 18:50 11/15/22 00:22 Collected by B. Coleman	11/14/22 18:32 11/14/22 18:50 11/16/22 11:27 Collected date/time 11/08/22 00:00 Analysis	GEB GEB ABL Received da 11/09/22 09:0	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time CO Location
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Metals (ICP) by Method 6010D DUPLICATE L1555864-06 GW Method Gravimetric Analysis by Method 2540 C-2011	WG1958664 WG1959169 WG1959169 Batch	10 100 1	11/14/22 18:32 11/14/22 18:50 11/15/22 00:22 Collected by B. Coleman Preparation date/time	11/14/22 18:32 11/14/22 18:50 11/16/22 11:27 Collected date/time 11/08/22 00:00 Analysis date/time	GEB GEB ABL Received dat 11/09/22 09:0 Analyst	Location Mt. Juliet, TN
Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A Metals (ICP) by Method 6010D DUPLICATE L1555864-06 GW Method Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A	WG1958664 WG1959169 WG1959169 Batch	10 100 1 Dilution	11/14/22 18:32 11/14/22 18:50 11/15/22 00:22 Collected by B. Coleman Preparation date/time 11/15/22 13:20	11/14/22 18:32 11/14/22 18:50 11/16/22 11:27 Collected date/time 11/08/22 00:00 Analysis date/time 11/15/22 14:27	GEB GEB ABL Received da' 11/09/22 09:0	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time CO Location

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jeff Carr Project Manager

Wubb law

L1555864

Collected date/time: 11/08/22 11:35

Gravimetric Analysis by Method 2540 C-2011

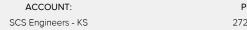
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	4440000		50000	1	11/15/2022 16:34	WG1959791

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	62400		3790	10000	10	11/12/2022 04:23	WG1958318
Fluoride	819	<u>J</u>	640	1500	10	11/12/2022 04:23	WG1958318
Sulfate	2910000		59400	500000	100	11/12/2022 04:39	WG1958318

Sample Narrative:


 ${\tt L1555864-01\,WG1958318:\ Dilution\ due\ to\ matrix\ impact\ on\ instrumentation\ at\ lower\ dilution}$

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	119	<u>J</u>	20.0	200	1	11/16/2022 11:13	WG1959169
Calcium	463000		79.3	1000	1	11/16/2022 11:13	WG1959169

Collected date/time: 11/08/22 10:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	1710000		20000	1	11/15/2022 16:34	WG1959791

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	3730	В	379	1000	1	11/14/2022 15:15	WG1958664
Fluoride	141	J	64.0	150	1	11/14/2022 15:15	WG1958664
Sulfate	1120000		5940	50000	10	11/14/2022 15:33	WG1958664

³Ss

Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	4200		20.0	200	1	11/16/2022 11:16	WG1959169
Calcium	285000		79.3	1000	1	11/16/2022 11:16	WG1959169

L1555864

Collected date/time: 11/08/22 11:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	2930000		50000	1	11/15/2022 16:34	WG1959791

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	10500	В	3790	10000	10	11/14/2022 15:51	WG1958664
Fluoride	1630		640	1500	10	11/14/2022 15:51	WG1958664
Sulfate	1930000		59400	500000	100	11/14/2022 16:09	WG1958664

Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	6960		20.0	200	1	11/16/2022 11:19	WG1959169
Calcium	393000		79.3	1000	1	11/16/2022 11:19	WG1959169

Collected date/time: 11/08/22 12:35

.1555864

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	2690000		50000	1	11/15/2022 14:27	WG1959964

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	17200	В	3790	10000	10	11/14/2022 16:27	WG1958664
Fluoride	1580	<u>J6</u>	640	1500	10	11/14/2022 16:27	WG1958664
Sulfate	1840000		59400	500000	100	11/14/2022 16:45	WG1958664

- Cn

⁵Sr

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	4340		20.0	200	1	11/21/2022 19:55	WG1959191
Calcium	459000	V	79.3	1000	1	11/21/2022 19:55	WG1959191

SAMPLE RESULTS - 05

Collected date/time: 11/08/22 11:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	2800000	J3	50000	1	11/15/2022 15:23	WG1959967

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	29700	В	3790	10000	10	11/14/2022 18:32	WG1958664
Fluoride	1460	J	640	1500	10	11/14/2022 18:32	WG1958664
Sulfate	1740000		59400	500000	100	11/14/2022 18:50	WG1958664

Sample Narrative:

L1555864-05 WG1958664: DILUTION DUE TO MATRIX

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	1570		20.0	200	1	11/16/2022 11:27	WG1959169
Calcium	439000		79.3	1000	1	11/16/2022 11:27	WG1959169

[°]Qc

DUPLICATE

SAMPLE RESULTS - 06

Collected date/time: 11/08/22 00:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	2310000		50000	1	11/15/2022 14:27	WG1959964

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	17100	<u>B</u>	3790	10000	10	11/14/2022 19:08	WG1958664
Fluoride	1580		640	1500	10	11/14/2022 19:08	WG1958664
Sulfate	1740000		59400	500000	100	11/14/2022 19:26	WG1958664

Cn

³Ss

Qc

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	4550		20.0	200	1	11/16/2022 11:30	WG1959169
Calcium	475000		79.3	1000	1	11/16/2022 11:30	WG1959169

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1555864-01,02,03

Method Blank (MB)

(MB) R3862970-1 11/15/22 16:34

,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	П		10000	10000

Ss

L1555740-17 Original Sample (OS) • Duplicate (DUP)

(OS) L1555740-17 11/15/22 16:34 • (DUP) R3862970-3 11/15/22 16:34

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	674000	688000	1	2.06		5

L1555740-19 Original Sample (OS) • Duplicate (DUP)

(OS) L1555740-19 11/15/22 16:34 • (DUP) R3862970-4 11/15/22 16:34

, ,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	421000	430000	1	2.12		5

Sc

Laboratory Control Sample (LCS)

(LCS) R3862970-2 11/15/22 16:34

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8770000	99.7	77.3-123	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1555864-04,06

Method Blank (MB)

(MB) R3862644-1 11/15/22 14:27

, ,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	II.		10000	10000

³Ss

L1555577-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1555577-05 11/15/22 14:27 • (DUP) R3862644-3 11/15/22 14:27

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	2110000	2370000	1	11.6	J3	5

[†]Cn

⁶Qc

L1555577-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1555577-11 11/15/22 14:27 • (DUP) R3862644-4 11/15/22 14:27

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	2150000	2460000	1	13.7	<u>J3</u>	5

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3862644-2 11/15/22 14:27

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8390000	95.3	77.3-123	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1555864-05

Method Blank (MB)

(MB) R3862626-1 11/15/22 15:23

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

Ss

L1555864-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1555864-05 11/15/22 15:23 • (DUP) R3862626-3 11/15/22 15:23

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	2800000	2970000	1	6.07	J3	5

L1555890-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1555890-01 11/15/22 15:23 • (DUP) R3862626-4 11/15/22 15:23

. ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1170000	1280000	1	8.96	<u>J3</u>	5

Sc

Laboratory Control Sample (LCS)

(LCS) R3862626-2 11/15/22 15:23

QUALITY CONTROL SUMMARY

L1555864-01

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R3860346-1	11/11/22	12:39
-----------------	----------	-------

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Fluoride	U		64.0	150
Sulfate	U		594	5000

[†]Cn

(OS) L1555228-04 11/11/22 19:09 • (DUP) R3860346-3 11/11/22 19:24

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	1840	1800	1	2.06		15
Fluoride	335	318	1	4.93		15
Sulfate	39900	39400	1	1.18		15

L1555565-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1555565-03 11/11/22 21:12 • (DUP) R3860346-6 11/11/22 21:27

	•						
		Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Aı	nalyte	ug/l	ug/l		%		%
CI	loride	46700	46700	1	0.0777		15
FI	uoride	452	458	1	1.21		15
Sı	lfate	184000	185000	1	0.488		15

Sc

Laboratory Control Sample (LCS)

Sulfate

(LCS) R3860346-2 11/11/22	12:55		
	Spike Amount	LCS Result	LCS Rec.
Analyte	ug/l	ug/l	%
Chloride	40000	38300	95.8
Fluoride	8000	7960	99.5

40000

39500

98.7

LCS	Qualifier

Rec. Limits % 80.0-120

80.0-120

80.0-120

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1555228-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1555228-04 11/11/22 19:09 • (MS) R3860346-4 11/11/22 19:39 • (MSD) R3860346-5 11/11/22 19:54

, ,	, ,		,	,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	1840	49500	49700	95.3	95.7	1	80.0-120			0.389	15
Fluoride	5000	335	5200	5160	97.4	96.4	1	80.0-120			0.886	15
Sulfate	50000	39900	90700	89200	102	98.6	1	80.0-120			1.65	15

L1555565-03 Original Sample (OS) • Matrix Spike (MS)

(OS) L1555565-03 11/11/22 21:12 • (MS) R3860346-7 11/11/22 22:13

(00) 2.000000 00 112.	()	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	46700	93300	93.2	1	80.0-120	
Fluoride	5000	452	5160	94.1	1	80.0-120	
Sulfate	50000	184000	226000	85.0	1	80.0-120	E

PAGE:

15 of 23

DATE/TIME:

11/22/22 07:21

QUALITY CONTROL SUMMARY

L1555864-02,03,04,05,06

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R3861086-1	11/14/22 11:49	
	MD	,

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	546	<u>J</u>	379	1000
Fluoride	U		64.0	150
Sulfate	U		594	5000

(OS) L1555864-04 11/14/22 16:27 • (DUP) R3861086-3 11/14/22 17:02

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	17200	17300	10	0.104		15
Fluorida	1580	1560	10	1 51		15

L1556298-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1556298-07 11/14/22 23:00 • (DUP) R3861086-6 11/14/22 23:18

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	94700	94700	1	0.0259		15
Fluoride	932	933	1	0.182		15
Sulfate	4120	4090	1	0.904	J	15

Sc

Laboratory Control Sample (LCS)

(LCS) R3861086-2 11/14/22 12:07

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	41100	103	80.0-120	
Fluoride	8000	8610	108	80.0-120	
Sulfate	40000	41600	104	80 0-120	

L1555864-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1555864-04 11/14/22 16:27 • (MS) R3861086-4 11/14/22 17:56 • (MSD) R3861086-5 11/14/22 18:14

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	17200	59500	58900	84.5	83.3	10	80.0-120			1.01	15
Fluoride	5000	1580	5480	5440	77.9	77.2	10	80.0-120	<u>J6</u>	<u>J6</u>	0.683	15

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1555864-02,03,04,05,06

L1556298-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1556298-07 11/14/22 23:00 • (MS) R3861086-7 11/14/22 23:36 • (MSD) R3861086-8 11/14/22 23:54

(03) 11330230 07 11/14/22	25.00 - (1415) 1	(3001000 / 11/	14722 25.50 - ((NSD) (NSOC100	0 0 11/14/22 23	J. J -						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	94700	142000	142000	94.2	95.3	1	80.0-120			0.377	15
Fluoride	5000	932	5900	5970	99.5	101	1	80.0-120			1.18	15
Sulfate	50000	4120	53200	53700	98.1	99.2	1	80.0-120			1.02	15

Calcium

QUALITY CONTROL SUMMARY

L1555864-01,02,03,05,06

Method Blank (MB)

Metals (ICP) by Method 6010D

(MB) R3861697-1 11/16/22 10:53 MB RDL MB Result MB Qualifier MB MDL Analyte ug/l ug/l ug/l Boron U 20.0 200 U 79.3 1000 Calcium

[†]Cn

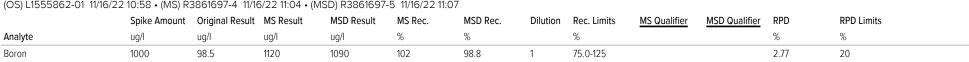
Laboratory Control Sample (LCS)

10000

(LCS) R3861697-2 11/16/22	2 10:55				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	1000	100	80.0-120	
Calcium	10000	10100	101	80.0-120	

GI

L1555862-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)


345000

341000

22.1

(OS) L1555862-01 11/16/22 10:58 • (MS) R3861697-4 11/16/22 11:04 • (MSD) R3861697-5 11/16/22 11:07

343000

75.0-125

1.20

20

0.000

QUALITY CONTROL SUMMARY

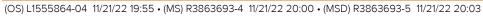
L1555864-04

Metals (ICP) by Method 6010D Method Blank (MB)

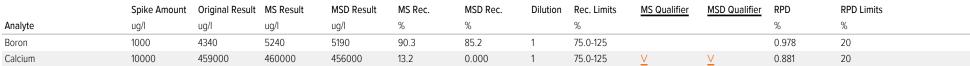
(MB) R3863693-1 11/21	1/22 19:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200
Calcium	U		79.3	1000

Laboratory Control Sample (LCS)

(LCS) R3863693-2 11/21/2	.2 19:52				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	952	95.2	80.0-120	
Calcium	10000	9520	95.2	80.0-120	



[†]Cn


GI

L1555864-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	Definitions
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
Qualifici	DESCRIPTION

SCS Engineers - KS

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE:

L1555864

27213168.22-A

11/22/22 07:21

Ss

Cn

Sr

Qc

Gl

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

ompany Name/Address:			Billing Info	rmation:					A	palvsis.	Conta	ner / Pres	ervative	Total Control		Chain of Custody	Page of
SCS Engineers - KS S75 W. 110th Street Overland Park, KS 66210			8575 W.	s Payable 110th Street d Park, KS 66	210	Pres Chk		₽ ²								PEOPLE	RCE" ADVANCING SCIENCE
eport to: ason Franks			Email To:	csengineers.com	jay.martin@e	vergy.c	Pres									12065 Lebanon Rd Mo Submitting a sample vi	a this chain of custody
Project-Description: Evergy Montrose Gen Station LF GW 2	022-23	City/State Collected:	NONY	aM, XO	Please C PT MT (ircle:	E-No								7	Pace Terms and Condit	gment and acceptance of the ions found at: om/hubfs/pas-standard-
Phone: 913-681-0030	Client Project 27213168.			Lab Project # AQUAOPKS	-MONTROS	E	125mlHDPE-NoPres	E-HNO3	S							SDG# 45	S 586 4 086
collected by (print):	Site/Facility II			P.O. #			504) 125	250m1HDP	-NoPre							Acctnum: AQ	UAOPKS
mmediately Packed on Ice N Y		y 10 D		Date Resu	lts Needed	No.	(Cld, F,	6010 250	50mIHDPE-NoPres							Prelogin: P95 PM: 206 - Jeff PB:	8828
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Anions	B, Ca-	TDS 25							Shipped Via: F	Sample # (lab only)
WW-601	()	GW	-	11-8-72	1135	3	X	X	X	-							- 01
/W-602		GW			1055	3	X	Х	X								-02
MW-603		gw .		1	1140	3	Χ	Х	X								- 03
WW-604		GW			1135	3	Χ	Х	-X				100				- 04
MW-605		GW			1)155	3	Х	X	X	=======================================							- 05
WON WE WED		GW	1:		-	3	X	X	X								- 64
DUPLICATE,	V	GW	4	V		3	Х	Х	X								-06
	1					1		- 7				-					
					Paragraphic stay												
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH Flow		_ Temp		COC	Seal Pr Signed/ les arr	le Receipt Chresent/Intact Accurate: rive intact: tles used:	necklist.
DIM Drinking Water	Samples returned UPS FedEx			Track	ing#									Suff	icient Zero He	volume sent: If Applicab eadspace:	Y N
Relimpuished by : (Signature)	Da	ite: 	Time	(O) Rece	ved by: (Signat	ture)	4 2		1	Trip Blan	k Rece		CL / MeoH	Pres	ervatio	on Correct/Che <0.5 mR/hr:	ecked: N
Relinquished by : (Signature)	Da	ite:	Time	Rece	ved by: (Signat	ture)		1	1	Temp:	1 °		s Received:	If pre	eservation	n required by Log	gin: Date/Time
Relinquished by : (Signature)	Da	ite:	Time	Rece	yed for lab by:	(Signat	ure)—	K	1	Date:	101	Time:	3900	Hold			Condition:

APPENDIX E

STATISTICAL ANALYSES

E.1 Fall 2021 Semiannual Detection Monitoring Statistical AnalysesE.2 Spring 2022 Semiannual Detection Monitoring Statistical Analyses

<u> </u>	Appendix E.1		
Fall 2021 Semiannual [Statistical Analyses	
i ali 2021 Semiamidari	Detection Monitoring	, Statistical Arialyses	

MEMORANDUM

April 1, 2022

To: Montrose Generating Station

400 SW Highway P Clinton, MO 64735 Evergy Metro, Inc.

From: SCS Engineers

RE: Determination of Statistically Significant Increases - CCR Landfill Fall 2021 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Montrose Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on November 16, 2021. Review and validation of the results from the November 2021 Detection Monitoring Event was completed on January 6, 2022, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on January 24, 2022 and March 1, 2022.

The completed statistical evaluation identified one Appendix III constituent above its prediction limit established for monitoring well MW-604.

Monitoring Well Constituents	*UPL	Observation November 16, 2021	1st Verification January 24, 2022	2nd Verification March 1, 2022
MW-604				
Chloride	15.28	16.3	18.8	17.2

^{*}UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified an SSI above background prediction limits for chloride at monitoring well MW-604.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas™ Output:

Statistical evaluation output from SanitasTM for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results, 1st verification re-sample results (when applicable), 2nd verification re-sample results (when applicable), extra sample results for pH because pH is collected as part of the

Montrose Generating Station
Determination of Statistically Significant Increases
CCR Landfill
April 1, 2022
Page 2 of 2

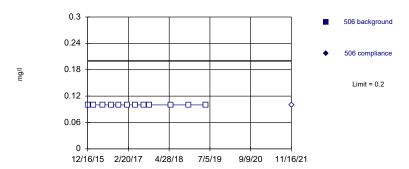
sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas™ Configuration Settings:

Screen shots of the applicable SanitasTM configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

Revision Number	Revision Date	Attachment Revised	Summary of Revisions

Montrose Generating Station Determination of Statistically Significant Increases CCR Landfill April 1, 2022


ATTACHMENT 1

Sanitas[™] Output

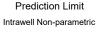
Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

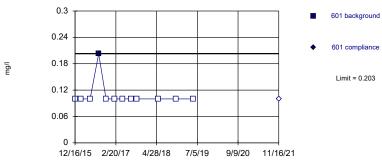
Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 3/30/2022 3:09 PM View: LF CCR III


Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG


Prediction Limit Within Limit Intrawell Parametric 602 background 602 compliance 3.6 Limit = 5.168 2.4 1.2 12/16/15 2/20/17 4/28/18 7/5/19 9/9/20 11/16/21

Background Data Summary: Mean=4.707, Std. Dev.=0.2995, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9228, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 91.67% NDs. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Boron Analysis Run 3/30/2022 3:09 PM View: LF CCR III

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric 603 background 603 compliance 4.8 πg/l Limit = 7.275 3.2 1.6 12/16/15 2/20/17 4/28/18 7/5/19

Background Data Summary: Mean=6.496, Std. Dev.=0.5141, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9744, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

9/9/20

11/16/21

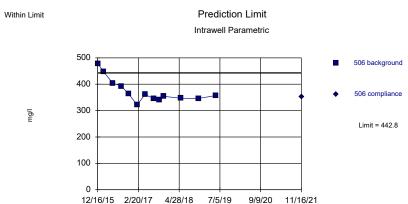
Constituent: Boron Analysis Run 3/30/2022 3:15 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	506	506	601	601	602	602	603	603
12/16/2015	<0.2		<0.2		5.08		6.28	
2/16/2016	<0.2		<0.2		5.04		6.81	
5/23/2016	<0.2		<0.2		5.17		7.06	
8/22/2016	<0.2		0.203		4.62		6.91	
11/7/2016					4.84		6.43	
11/8/2016	<0.2		<0.2					
2/7/2017	<0.2		<0.2		4.62		6.39	
5/1/2017	<0.2							
5/2/2017			<0.2		4.35		5.83	
7/31/2017	<0.2		<0.2		4.63		6.9	
10/2/2017	<0.2		<0.2		4.94		6.5	
5/14/2018	<0.2		<0.2		4.39		5.94	
11/19/2018	<0.2		<0.2		4.32		5.56	
5/21/2019	<0.2		<0.2		4.48		7.35	
7/15/2019							6.49	
11/16/2021		<0.2		<0.2		4.09		5.25

Sanitas[™] v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit



Background Data Summary: Mean=4.864, Std. Dev.=0.3316, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9664, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Boron Analysis Run 3/30/2022 3:09 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=373.9, Std. Dev.=45.49, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.013, calculated = 0.8335, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182

2.1
1.68
605 background

605 compliance

Limit = 2.045

Prediction Limit

Intrawell Parametric

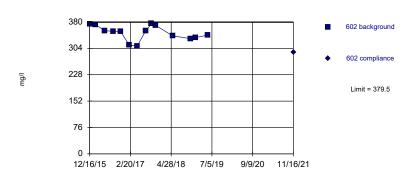
Background Data Summary: Mean=1.842, Std. Dev.=0.132, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9267, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05182). Report alpha = 0.00184.

Constituent: Boron Analysis Run 3/30/2022 3:09 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric 600 601 background 601 compliance Limit = 507.3


Background Data Summary: Mean=471.6, Std. Dev.=24.04, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9414, critical = 0.825. Kappa = 1.486 (e=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.

Constituent: Boron, Calcium Analysis Run 3/30/2022 3:15 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	604	604	605	605	506	506	601	601
12/16/2015	4.62				479		469	
12/17/2015			2.02					
2/16/2016	4.88		2.03		448		481	
5/23/2016	5.06		2.02		404		473	
8/22/2016	5.5		1.89		393		502	
11/7/2016	4.98		1.85					
11/8/2016					363		481	
2/7/2017	5.13		1.84		322		427	
5/1/2017					361			
5/2/2017	4.74		1.78				430	
7/31/2017	4.75		1.74		346		480	
10/2/2017	5.14		1.87		341		508	
11/15/2017					354		498	
5/14/2018	4.35		1.73		347		453	
11/19/2018	4.36		1.68		346		456	
5/21/2019	4.86		1.65		357		472	
7/15/2019							472	
11/16/2021		5.92		1.63		353		460
1/24/2022		5.31 1st Verificat	ion					

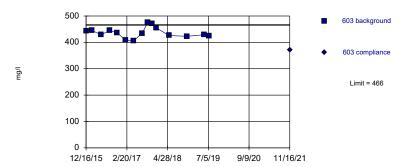
Within Limit Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=348.4, Std. Dev.=20.89, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.014, calculated = 0.929, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184.

Constituent: Calcium Analysis Run 3/30/2022 3:09 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose


Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric 604 background 604 compliance Limit = 478

Background Data Summary: Mean=425.3, Std. Dev.=35.45, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9457, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=436.8, Std. Dev.=20.01, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9561, critical = 0.835. Kappa = 1.458 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 3/30/2022 3:09 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

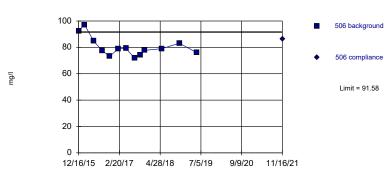
Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

605 background
605 compliance

Limit = 445.2

Background Data Summary: Mean=414.2, Std. Dev.=21.27, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9188, critical = 0.835. Kappa = 1.458 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Calcium Analysis Run 3/30/2022 3:15 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	602	602	603	603	604	604	605	605
12/16/2015	373		444		454			
12/17/2015							427	
2/16/2016	372		445		470		426	
5/23/2016	355		429		474		412	
8/22/2016	353		445		440		431	
11/7/2016	353		437		412		407	
2/7/2017	314		409		392		367	
5/2/2017	310		405		381		376	
7/31/2017	354		434		369		415	
10/2/2017	375		476		442		447	
11/15/2017	370		471		417		442	
12/29/2017			455					
5/14/2018	340		426		421		412	
11/19/2018	332		423		420		407	
1/10/2019	335						421	
5/21/2019	342		429		476		416	
7/15/2019			424		386		407	
11/16/2021		292		370		472		435

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=80.4, Std. Dev.=7.382, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.8755, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184

Constituent: Chloride Analysis Run 3/30/2022 3:09 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

602 background
602 compliance
Limit = 5.212

Background Data Summary (based on square root transformation): Mean=2.102, Std. Dev.=0.1238, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.8603, critical = 0.835. Kappa = 1.458 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=51.97, Std. Dev=3.1, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9652, critical = 0.835. Kappa = 1.458 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

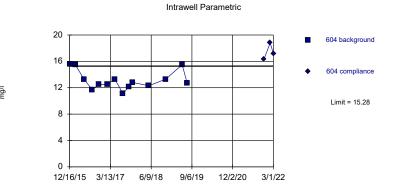
Constituent: Chloride Analysis Run 3/30/2022 3:09 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

9
7.2
603 background
603 compliance
Limit = 8.511


Background Data Summary: Mean=7.659, Std. Dev.=0.5838, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Villk @alpha = 0.01, calculated = 0.9807, critical = 0.835. Kappa = 1.458 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 3/30/2022 3:15 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	506	506	601	601	602	602	603	603
12/16/2015	92.4		52.5		4.48		7.33	
2/16/2016	97.2		53		4.38		7.65	
5/23/2016	84.7		50.6		4.29		7.64	
8/22/2016	77.5		45.5		4.65		7.9	
11/7/2016					4.35		7.67	
11/8/2016	73.1		47.5					
2/7/2017	79		49		4.04		7.35	
5/1/2017	79.2							
5/2/2017			51.1		4.69		7.67	
7/31/2017	71.9		52.7		4.28		8.03	
10/2/2017	74.4		52.4		6.06		8.37	
11/15/2017	77.7		54.2		4.93		7.83	
12/29/2017					4.44			
5/14/2018	79		55		4.14		7.16	
11/19/2018	83.1		49.6		3.97		6.76	
1/10/2019					3.71			
5/21/2019	76		55.5		4.11		8.24	
7/15/2019			56.5				8.75	
8/19/2019			54.5				6.54	
11/16/2021		86.3		36.6		3.65		5.53

Exceeds Limit Prediction Limit

Background Data Summary: Mean=13.16, Std. Dev.=1.425, n=14, Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8723, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 3/30/2022 3:09 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric

506 background
506 compliance
Limit = 3374

Background Data Summary: Mean=2833, Std. Dev.=351.4, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8961, critical = 0.895. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=49.93, Std. Dev.=3.99, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.904, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

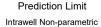
Constituent: Chloride Analysis Run 3/30/2022 3:09 PM View: LF CCR III

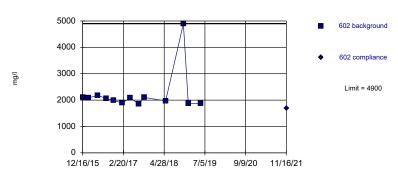
Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

5000
4000
4000
601 background
601 compliance
Limit = 4871


Background Data Summary: Mean=4477, Std. Dev.=255.5, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9477, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184


Constituent: Chloride, Dissolved Solids Analysis Run 3/30/2022 3:15 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	604	604	605	605	506	506	601	601
12/16/2015	15.6				3540		4470	
12/17/2015			43.9					
2/16/2016	15.5		45.7		3280		4280	
5/23/2016	13.3		47.3		2910		4530	
8/22/2016	11.7		46.5		3260		4810	
11/7/2016	12.5		48.2					
11/8/2016					2710		4370	
2/7/2017	12.5		48		2790		4640	
5/1/2017					2760			
5/2/2017	13.3		48.7				4530	
7/31/2017	11.1		49.1		2620		4030	
10/2/2017	12.1		48.7		2670		4790	
11/15/2017	12.8		48.8					
5/14/2018	12.3		47.8		2560		4760	
11/19/2018	13.3		51.7		2430		4100	
1/10/2019			50.9					
3/13/2019			52.4					
5/21/2019	15.5		55.4		2460		4410	
7/15/2019	12.7		57.8					
8/19/2019			57.9					
11/16/2021		16.3		46.6		2670		3710
1/24/2022		18.8 1st Verificat	ion					
3/1/2022		17.2 2nd Verifica	tion					

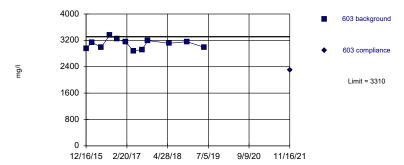
Within Limit Pr

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.003769. Individual comparison alpha = 0.001886 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Dissolved Solids Analysis Run 3/30/2022 3:09 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG


Within Limit Prediction Limit
Intrawell Parametric

4000
3200
4000
604 background
604 compliance
Limit = 3150

Background Data Summary: Mean=2648, Std. Dev.=331.5, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9778, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184.

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=3088, Std. Dev.=143.6, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9528, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Dissolved Solids Analysis Run 3/30/2022 3:09 PM View: LF CCR III

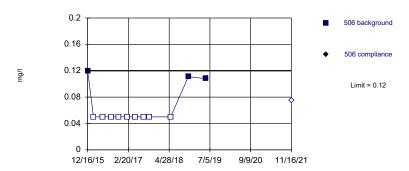
Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

3100
2480
605 background
605 compliance
Limit = 3020

Background Data Summary: Mean=2665, Std. Dev.=230.2, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9421, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182.


Constituent: Dissolved Solids Analysis Run 3/30/2022 3:15 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	•						ll .	
	602	602	603	603	604	604	605	605
12/16/2015	2100		2940		2820			
12/17/2015							2800	
2/16/2016	2080		3140		2690		2750	
5/23/2016	2180		2990		3010		2760	
8/22/2016	2060		3350		2890		2990	
11/7/2016	1990		3240		2270		2760	
2/7/2017	1890		3150		2670		2580	
5/2/2017	2080		2880		2350		2500	
7/31/2017	1860		2920		2070		2170	
10/2/2017	2100		3190		2570		2900	
5/14/2018	1970		3110		2820		2550	
11/19/2018	4900		3160		2320		2410	
1/10/2019	1870							
5/21/2019	1870		2990		3270		2810	
7/15/2019					2680			
11/16/2021		1690		2290		2710		2410

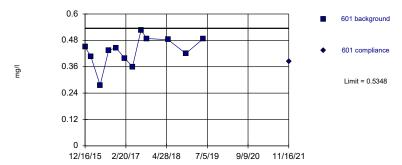
Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.004342. Individual comparison alpha = 0.002173 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

> Constituent: Fluoride Analysis Run 3/30/2022 3:10 PM View: LF CCR III

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.


Prediction Limit Within Limit Intrawell Parametric 0.2 602 background 0.16 602 compliance 0.12 Limit = 0.1691 0.08 山白 $\dot{\Box}$ 0.04 12/16/15 2/20/17 4/28/18 7/5/19

Background Data Summary (after Aitchison's Adjustment): Mean=0.07108, Std. Dev.=0.06358, n=12, 41.67% NDs. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8063, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

9/9/20 11/16/21

Constituent: Fluoride Analysis Run 3/30/2022 3:10 PM View: LF CCR III Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=0.4313, Std. Dev.=0.06712, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9364, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Fluoride Analysis Run 3/30/2022 3:10 PM View: LF CCR III

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric 0.8 603 background 0.64 603 compliance 0.48 πg/l Limit = 0.7176 0.32 0.16 12/16/15 2/20/17 4/28/18 7/5/19 9/9/20 11/16/21

Background Data Summary: Mean=0.5403, Std. Dev.=0.1171, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9546, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Fluoride Analysis Run 3/30/2022 3:10 PM View: LF CCR III

Constituent: Fluoride Analysis Run 3/30/2022 3:15 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	506	506	601	601	602	602	603	603
12/16/2015	0.12		0.45		0.148		0.673	
2/16/2016	<0.1		0.406		<0.1		0.552	
5/23/2016	<0.1		0.276		<0.1		0.523	
8/22/2016	<0.1		0.435		0.114		0.431	
11/7/2016					<0.1		0.442	
11/8/2016	<0.1		0.446					
2/7/2017	<0.1		0.399		<0.1		0.459	
5/1/2017	<0.1							
5/2/2017			0.36		0.122		0.585	
7/31/2017	<0.1		0.526		0.116		0.388	
10/2/2017	<0.1		0.488		0.108		0.666	
5/14/2018	<0.1		0.483		0.113		0.727	
6/26/2018							0.568	
11/19/2018	0.111		0.42		<0.1		0.645	
5/21/2019	0.108		0.487		0.132		0.365	
11/16/2021		<0.15		0.384		<0.15		0.54

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.4936, Std. Dev.=0.04663, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9142, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Fluoride Analysis Run 3/30/2022 3:10 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limits

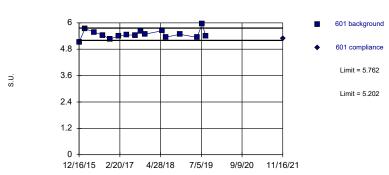
Prediction Limit
Intrawell Non-parametric

506 background

506 compliance
Limit = 9.26
Limit = 5.11

12/16/15 2/20/17 4/28/18 7/5/19 9/9/20 11/16/21

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 13 background values. Well-constituent pair annual alpha = 0.007539. Individual comparison alpha = 0.003773 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.


Background Data Summary: Mean=0.1971, Std. Dev.=0.02515, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9677, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184

Constituent: Fluoride Analysis Run 3/30/2022 3:10 PM View: LF CCR III

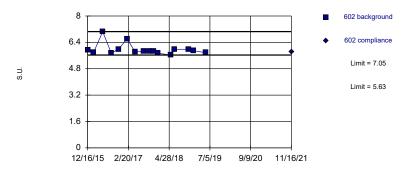
Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=5.482, Std. Dev.=0.1956, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9558, critical = 0.844. Kappa = 1.43 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00182

Constituent: Fluoride, pH Analysis Run 3/30/2022 3:15 PM View: LF CCR III


Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	604	604	605	605	506	506	601	601
12/16/2015	0.515				5.11		5.12	
12/17/2015			0.246					
2/16/2016	0.497		0.156		5.56		5.73	
5/23/2016	0.437		0.166		5.47		5.58	
8/22/2016	0.468		0.191		5.57		5.44	
11/7/2016	0.468		0.203					
11/8/2016					6.04		5.26	
2/7/2017	0.467		0.187		9.26		5.41	
5/1/2017					5.51			
5/2/2017	0.45		0.197				5.45	
7/31/2017	0.601		0.2		5.51		5.44	
10/2/2017	0.542		0.184		5.59		5.61	
11/15/2017					5.58		5.49	
5/14/2018	0.506		0.226		5.61		5.64	
6/26/2018							5.35	
11/19/2018	0.453		0.187		5.55		5.48	
5/21/2019	0.519		0.222		5.49		5.34	
7/15/2019							5.96	
8/19/2019							5.41	
11/16/2021		0.425		0.212		5.53		5.3

dantas v.s.o.32 dantas soltware ilcensed to 303 Engineers. C

Within Limits

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 16 background values. Well-constituent pair annual alpha = 0.004102. Individual comparison alpha = 0.002052 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 3/30/2022 3:10 PM View: LF CCR III

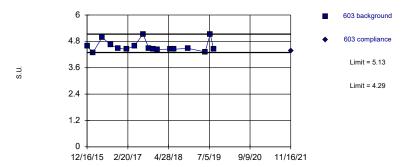
Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Parametric

604 background
604 compliance
Limit = 6.182
2.8


1.4

0
12/16/15 3/13/17 6/9/18 9/6/19 12/2/20 3/1/22

Background Data Summary: Mean=5.848, Std. Dev.=0.2249, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8937, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limits Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 17 background values. Well-constituent pair annual alpha = 0.003639. Individual comparison alpha = 0.00182 (1 of 3). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: pH Analysis Run 3/30/2022 3:10 PM View: LF CCR III

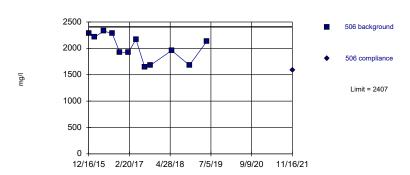
Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limits

Prediction Limit
Intrawell Parametric

605 background
605 compliance
Limit = 5.851
2.8
1.4
0
12/17/15 2/21/17 4/29/18 7/5/19 9/9/20 11/16/21


Background Data Summary: Mean=5.599, Std. Dev.=0.1804, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8888, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH Analysis Run 3/30/2022 3:16 PM View: LF CCR III

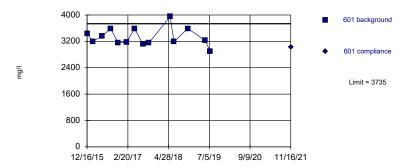
Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	602	602	603	603	604	604	605	605
12/16/2015	5.93		4.58		5.79			
12/17/2015							5.57	
2/16/2016	5.78		4.29		5.51		5.34	
5/23/2016	7.05		4.98		6.3		6.11	
8/22/2016	5.74		4.65		5.67		5.42	
11/7/2016	5.99		4.48		6.04		5.49	
2/7/2017	6.62		4.44		6.1		5.58	
5/2/2017	5.81		4.6		5.72		5.58	
7/31/2017	5.87		5.13		5.82		5.55	
10/2/2017	5.86		4.48		5.72		5.58	
11/15/2017	5.87		4.44		5.73		5.55	
12/29/2017	5.74		4.43					
5/14/2018	5.63		4.45		5.7		5.48	
6/26/2018	5.98		4.44				5.6	
11/19/2018	5.98		4.48		5.75		5.5	
1/10/2019	5.9						5.79	
3/13/2019							5.73	
5/21/2019	5.77		4.32		5.82		5.64	
7/15/2019			5.13		6.2		5.85	
8/19/2019			4.46				5.42	
11/16/2021		5.82		4.37		5.66		5.44
1/24/2022						5.82 E	Extra Sample	
3/1/2022						5.77	Extra Sample	

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=2019, Std. Dev.=251.7, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8935, critical = 0.805. Kappa = 1.542 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Sulfate Analysis Run 3/30/2022 3:10 PM View: LF CCR III


Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric 2000 602 background 1600 602 compliance 1200 Limit = 1569 800 400 12/16/15 2/20/17 4/28/18 7/5/19 9/9/20 11/16/21

Background Data Summary: Mean=1369, Std. Dev.=134.2, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.956, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

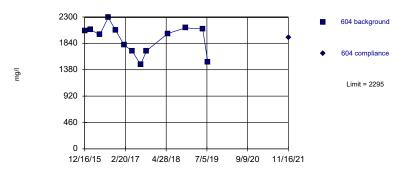
Background Data Summary: Mean=3331, Std. Dev.=272, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9196, critical = 0.825. Kappa = 1.486 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Sulfate Analysis Run 3/30/2022 3:10 PM View: LF CCR III

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric 2900 603 background 2320 603 compliance 1740 πg/l Limit = 2801 1160 580 12/16/15 2/20/17 4/28/18 7/5/19 9/9/20 11/16/21

Background Data Summary: Mean=2441, Std. Dev.=237.6, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9483, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

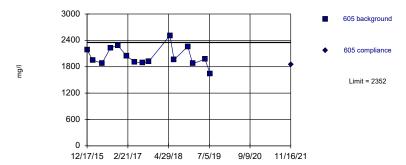

Constituent: Sulfate Analysis Run 3/30/2022 3:16 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	506	506	601	601	602	602	603	603
12/16/2015	2290		3430		1540		2440	
2/16/2016	2210		3200		1410		2470	
5/23/2016	2330		3360		1490		2760	
8/22/2016	2280		3590		1320		2710	
11/7/2016					1370		2760	
11/8/2016	1930		3160					
2/7/2017	1920		3180		1430		2500	
5/1/2017	2170							
5/2/2017			3590		1190		2220	
7/31/2017	1650		3110		1210		2330	
10/2/2017	1680		3150		1340		2370	
5/14/2018	1960		3950		1660		2080	
6/26/2018			3190		1270			
11/19/2018	1680		3590		1430		2590	
1/10/2019					1250			
5/21/2019	2130		3230		1260		2480	
7/15/2019			2900				2020	
11/16/2021		1590		3030		1170		1860

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric


Background Data Summary: Mean=1916, Std. Dev.=250.6, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9059, critical = 0.814. Kappa = 1.514 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184.

Constituent: Sulfate Analysis Run 3/30/2022 3:10 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.32 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=2033, Std. Dev.=218.7, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9344, critical = 0.835. Kappa = 1.458 (e=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00184.

Constituent: Sulfate Analysis Run 3/30/2022 3:10 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Constituent: Sulfate Analysis Run 3/30/2022 3:16 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	604	604	605	605
12/16/2015	2060			
12/17/2015			2180	
2/16/2016	2080		1950	
5/23/2016	1990		1880	
8/22/2016	2290		2230	
11/7/2016	2070		2280	
2/7/2017	1810		2050	
5/2/2017	1710		1910	
7/31/2017	1470		1890	
10/2/2017	1710		1920	
5/14/2018	2010		2510	
6/26/2018			1960	
11/19/2018	2110		2260	
1/10/2019			1870	
5/21/2019	2090		1970	
7/15/2019	1510		1640	
11/16/2021		1940		1850

		Montrose (Generating Sta	tion UWL	Client: SCS Engir	neers Da	ata: Montro	se P	rinted 3/30/	2022, 3:16 PM		
<u>Constituent</u>	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>		Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/l)	506	0.2	n/a	11/16/202	21	0.1ND	No	12	100	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/l)	601	0.203	n/a	11/16/202	21	0.1ND	No	12	91.67	n/a	0.002173	NP Intra (NDs) 1 of 3
Boron (mg/l)	602	5.168	n/a	11/16/202	21	4.09	No	12	0	No	0.00188	Param Intra 1 of 3
Boron (mg/l)	603	7.275	n/a	11/16/202	21	5.25	No	13	0	No	0.00188	Param Intra 1 of 3
Boron (mg/l)	604	5.376	n/a	1/24/2022	2	5.31	No	12	0	No	0.00188	Param Intra 1 of 3
Boron (mg/l)	605	2.045	n/a	11/16/202	21	1.63	No	12	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/l)	506	442.8	n/a	11/16/202	21	353	No	13	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/l)	601	507.3	n/a	11/16/202	21	460	No	14	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/l)	602	379.5	n/a	11/16/202	21	292	No	14	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/l)	603	466	n/a	11/16/202	21	370	No	15	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/l)	604	478	n/a	11/16/202	21	472	No	14	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/l)	605	445.2	n/a	11/16/202	21	435	No	15	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/l)	506	91.58	n/a	11/16/202	21	86.3	No	13	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/l)	601	56.49	n/a	11/16/202	21	36.6	No	15	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/l)	602	5.212	n/a	11/16/202	21	3.65	No	15	0	sqrt(x)	0.00188	Param Intra 1 of 3
Chloride (mg/l)	603	8.511	n/a	11/16/202	21	5.53	No	15	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/l)	604	15.28	n/a	3/1/2022		17.2	Yes	14	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/l)	605	55.57	n/a	11/16/202	21	46.6	No	17	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	506	3374	n/a	11/16/202	21	2670	No	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	601	4871	n/a	11/16/202	21	3710	No	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	602	4900	n/a	11/16/202	21	1690	No	13	0	n/a	0.001886	NP Intra (normality)
Dissolved Solids (mg/l)	603	3310	n/a	11/16/202	21	2290	No	12	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	604	3150	n/a	11/16/202	21	2710	No	13	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	605	3020	n/a	11/16/202	21	2410	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/l)	506	0.12	n/a	11/16/202	21	0.075ND	No	12	75	n/a	0.002173	NP Intra (NDs) 1 of 3
Fluoride (mg/l)	601	0.5348	n/a	11/16/202	21	0.384	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/l)	602	0.1691	n/a	11/16/202	21	0.075ND	No	12	41.67	No	0.00188	Param Intra 1 of 3
Fluoride (mg/l)	603	0.7176	n/a	11/16/202	21	0.54	No	13	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/l)	604	0.5655	n/a	11/16/202	21	0.425	No	12	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/l)	605	0.2359	n/a	11/16/202	21	0.212	No	12	0	No	0.00188	Param Intra 1 of 3
pH (S.U.)	506	9.26	5.11	11/16/202	21	5.53	No	13	0	n/a	0.003773	NP Intra (normality)
pH (S.U.)	601	5.762	5.202	11/16/202	21	5.3	No	16	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	602	7.05	5.63	11/16/202	21	5.82	No	16	0	n/a	0.002052	NP Intra (normality)
pH (S.U.)	603	5.13	4.29	11/16/202	21	4.37	No	17	0	n/a	0.00182	NP Intra (normality)
pH (S.U.)	604	6.182	5.514	3/1/2022		5.77	No	14	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	605	5.851	5.347	11/16/202	21	5.44	No	18	0	No	0.000	Param Intra 1 of 3
Sulfate (mg/l)	506	2407	n/a	11/16/202	21	1590	No	12	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/l)	601	3735	n/a	11/16/202	21	3030	No	14	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/l)	602	1569	n/a	11/16/202	21	1170	No	14	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/l)	603	2801	n/a	11/16/202	21	1860	No	13	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/l)	604	2295	n/a	11/16/202	21	1940	No	13	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/l)	605	2352	n/a	11/16/202	21	1850	No	15	0	No	0.00188	Param Intra 1 of 3

Montrose Generating Station Determination of Statistically Significant Increases CCR Landfill April 1, 2022

ATTACHMENT 2

Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Exclud	le data flag	s: i							
Data	Reading O	ptions							
● In	idividual Ob	servations							
\bigcirc M	lean of Eac	:h:	O Month						
\bigcirc M	ledian of Ea	ach:	Seasor	ı					
Non I	Datast / Te	ace Handling.							
		_	•••						
Setup	Seasons								
Aut	omatically F	Process Resar	mples						

Black and White Output	✓ Prompt to Overwrite/Append Summary Tables
✓ Four Plots Per Page	Round Limits to 2 Sig. Digits (when not set in data file)
Always Combine Data Pages	User-Set Scale
✓ Include Tick Marks on Data Page	✓ Indicate Background Data
Use Constituent Name for Graph Title	Show Exact Dates
☐ Draw Border Around Text Reports and Data Pages	☐ Thick Plot Lines
☑ Enlarge/Reduce Fonts (Graphs): 100%	7 5 . 2009
☑ Enlarge/Reduce Fonts (Data/Text Reports): 100%	Zoom Factor: 200% V
✓ Wide Margins (on reports without explicit setting)	Output Decimal Precision
Use CAS# (Not Const. Name)	C Less Precision
Truncate File Names to 20 Characters	Normal Precision
	More Precision
Include Limit Lines when found in Database	
Show Deselected Data on Time Series Lighter V	
Show Deselected Data on all Data Pages Light	
Setup Symbols and Colors	
✓ Store Pri	int Jobs in Multiple Constituent Mode Store All Print Jobs
	-
Printer: Adobe PDF	∨ Printers

Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Us	e Modified	Alpha							
✓ Te	✓ Test Residuals For Normality (Parametric test only) using Shapiro-Wilk/Francia ∨ at Alpha = 0.01 ∨								
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 □ Continue Parametric if Unable to Normalize □ Transformation (Parametric test only) ● Use Ladder of Powers ○ Natural Log or No Transformation ○ Never Transform ○ Use Specific Transformation: □ Use Best W Statistic □ Plot Transformed Values 								
Use N	on-Parame	tric Test (Sen'	s Slope/Mann	n-Kendall) when I	Non-Detects Per	cent > 75			
Inc	dude 95	% Confidence	e Interval aro	und Trend Line					
Au Au	Automatically Remove Outliers (Parametric test only)								
	Note: there is no "Always Use Non-Parametric" checkbox on this tab because, for consistency with prior versions, Sen's Slope / Mann-Kendall (the non-parametric alternative) is available as a report in its own right, under Analysis->Intrawell->Trend.								

Data Output Trend Test Control Cht Prediction Lim T	olerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests			
			sformation Use Ladder	of Powers				
Test for Normality using Shapiro-Wilk/Francia value at Alpha = 0.01 Value Natural Log or No Transformation								
✓ Use Non-Parametric Test when Non-Detects Percent > 50 Never Transform								
Use Aitchison's Adjustment v when Non-Detects Percent > 15								
Optional Further Refinement: Use Aitchison's whe	en NDs % >	50	Use Best W	/ Statistic				
Use Poisson Prediction Limit when Non-Detects Percent >	90		Plot Transfo	med Value	es			
Deseasonalize (Intra- and InterWell) If Seasonality Is Detected If Seasonality Is Detected Or Insufficient to Test Always (When Sufficient Data) Never	✓ Plot Ba	her Background Tr ckground Data andard Deviati		ed at Alpha	a = 0.05 V			
Always Use Non-Parametric	Override DF: Override Kappa:							
Always Use Non-Parametric Ovemde DF: Ovemde Kappa: Automatically Remove Background Outliers 2-Tailed Test Mode Show Deselected Data Lighter Show Deselected Data Lighter Show Deselected Data Lighter Downgradient (Compliance) Wells:								
Sampling Plan Comparing Individual Observations ☐ 1 of 1 ☐ 1 of 2	Highes Most R	etric Limit = [retric Limit wher t/Second High ecent PQL if a ecent Backgro	est Backgro vailable, or l	-Detects: ound Value MDL				

Data Output Trend Test Control Cht Prediction Lim Tolerance	Lim Conf/Tol Int	ANOVA Welch	S Other Tests				
Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney							
Use Modified Alpha 2-Tailed Test Mode Combine Background Wells on Mann-Whitney							
2-Tailed Test Mode Sometime Substitute of Malain Williams							
Outlier Tests							
© EPA 1989 Outlier Screening (fixed alpha of 0.05)							
Dixon's at $\alpha = 0.05 \lor \text{ or if n} > 22 \lor \text{ Rosner's at } \alpha = 0.01 \lor$	✓ Use EPA Scree	ening to establish Su	spected Outliers				
○ Tukey's Outlier Screening, with IQR Multiplier = 3.0 Use	Ladder of Powers to	o achieve Best W S	tat				
✓ Test For Normality using Shapiro-Wilk/Francia ✓ at Alpha = 0.1	✓ Test For Normality using Shapiro-Wilk/Francia ✓ at Alpha = 0.1 ✓						
Stop if Non-Normal							
O Continue with Parametric Test if Non-Normal							
O Tukey's if Non-Normal, with IQR Multiplier = 3.0 ✓ Use	Ladder of Powers t	to achieve Best W S	itat				
✓ No Outlier If Less Than 3.0 Times Median							
Apply Rules found in Ohio Guidance Document 0715							
Combine Background Wells on the Outlier Report							
Piper, Stiff Diagram							
Combine Wells	✓ Label Constit	tuents					
☐ Combine Dates ☐ Label Axes							
Use Default Constituent Names Note Cation-Anion Balance (Piper only)							
Use Constituent Definition File Edit							

APPENDIX E.2
Spring 2022 Semiannual Detection Monitoring Statistical Analyses

MEMORANDUM

September 28, 2022

To: Montrose Generating Station

400 SW Highway P Clinton, MO 64735 Evergy Metro, Inc.

From: SCS Engineers

RE: Determination of Statistically Significant Increases - CCR Landfill Spring 2022 Semiannual Detection Monitoring 40 CFR 257.94

Statistical analysis of monitoring data from the groundwater monitoring system for the CCR Landfill at the Montrose Generating Station has been completed in substantial compliance with the "Statistical Method Certification by A Qualified Professional Engineer" dated October 12, 2017. Detection monitoring groundwater samples were collected on May 10, 2022. Review and validation of the results from the May 2022 Detection Monitoring Event was completed on Jul 1, 2022, which constitutes completion and finalization of detection monitoring laboratory analyses. A statistical analysis was then conducted to determine whether there was a statistically significant increase (SSI) over background values for each constituent listed in Appendix III to Part 257-Constituents for Detection Monitoring. Two rounds of verification sampling were conducted for certain constituents on July 13, 2022 and August 16, 2022.

The completed statistical evaluation identified two Appendix III constituents above their prediction limits established for monitoring wells MW-604 and MW-605.

Monitoring Well Constituents	*UPL	Observation May 10, 2022	1st Verification July 13, 2022	2nd Verification August 16, 2022	
MW-604					
Chloride	16.6	16.9	17.4	17.5	
MW-605					
Calcium	437.3	482	434/450**	444	

^{*}UPL – Upper Prediction Limit

Determination: A statistical evaluation was completed for all Appendix III detection monitoring constituents in accordance with the certified statistical method. The statistical evaluation identified SSIs above background prediction limits for chloride at monitoring well MW-604 and for calcium at monitoring well MW-605.

Attached to this memorandum are the following backup information:

Attachment 1: Sanitas™ Output:

Statistical evaluation output from SanitasTM for the prediction limit analysis. This includes prediction limit plots, prediction limit background data, detection sample results,

^{**} Duplicate Sample

Montrose Generating Station Determination of Statistically Significant Increases CCR Landfill September 28, 2022 Page 2 of 2

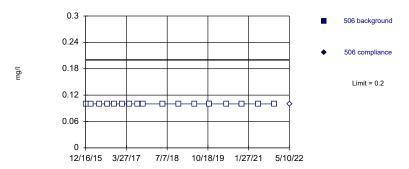
1st verification re-sample results (when applicable), 2nd verification re-sample results (when applicable), extra sample results for pH because pH is collected as part of the sampling procedure, and a Prediction Limit summary table. Output documentation includes the analytical data used for the statistical analyses.

Attachment 2: Sanitas[™] Configuration Settings:

Screen shots of the applicable SanitasTM configuration settings for the statistical prediction limit analysis. This includes data configuration, output configuration, prediction limit configuration and other tests configuration.

Revision Number	Revision Date	Attachment Revised	Summary of Revisions

Montrose Generating Station Determination of Statistically Significant Increases CCR Landfill September 28, 2022


ATTACHMENT 1

Sanitas[™] Output

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

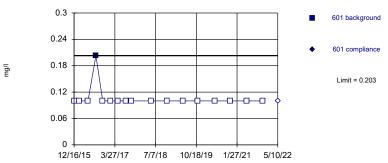
Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 17) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.00182. Individual comparison alpha = 0.0009102 (1 of 3).

> Constituent: Boron Analysis Run 9/7/2022 12:11 PM View: LF CCR III

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

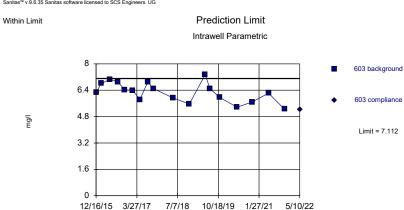
Prediction Limit Within Limit Intrawell Parametric 602 background 602 compliance 3.6 Limit = 5.05 2.4 1.2 12/16/15 3/27/17 7/7/18 10/18/19 1/27/21 5/10/22


Background Data Summary: Mean=4.55, Std. Dev.=0.354, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9211, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha =

Within Limit

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Prediction Limit

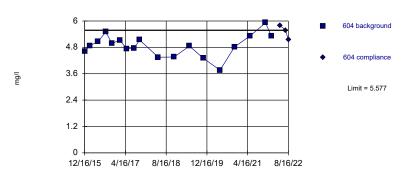

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 17 background values. 94.12% NDs. Well-constituent pair annual alpha = 0.00182. Individual comparison alpha = 0.0009102 (1 of 3).

> Constituent: Boron Analysis Run 9/7/2022 12:11 PM View: LF CCR III

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=6.274, Std. Dev.=0.6001, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9764, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha =

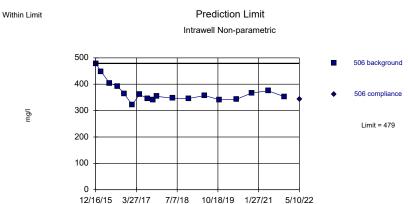

Constituent: Boron Analysis Run 9/7/2022 12:44 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

ı	506	506	601	601	602	602	603	603
12/16/2015	<0.2		<0.2		5.08		6.28	
2/16/2016	<0.2		<0.2		5.04		6.81	
5/23/2016	<0.2		<0.2		5.17		7.06	
8/22/2016	<0.2		0.203		4.62		6.91	
11/7/2016					4.84		6.43	
11/8/2016	<0.2		<0.2					
2/7/2017	<0.2		<0.2		4.62		6.39	
5/1/2017	<0.2							
5/2/2017			<0.2		4.35		5.83	
7/31/2017	<0.2		<0.2		4.63		6.9	
10/2/2017	<0.2		<0.2		4.94		6.5	
5/14/2018	<0.2		<0.2		4.39		5.94	
11/19/2018	<0.2		<0.2		4.32		5.56	
5/21/2019	<0.2		<0.2		4.48		7.35	
7/15/2019							6.49	
11/5/2019	<0.2		<0.2		4.16		5.96	
5/21/2020	<0.2		<0.2		4.27		5.37	
11/10/2020	<0.2		<0.2		4.18		5.69	
5/17/2021					4.17		6.22	
5/18/2021	<0.2		<0.2					
11/16/2021	<0.2		<0.2		4.09		5.25	
5/10/2022		<0.2		<0.2		4.05		5.23

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=4.878, Std. Dev.=0.501, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9842, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.0188

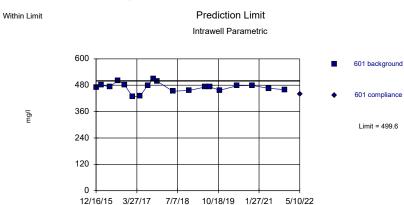
Constituent: Boron Analysis Run 9/7/2022 12:11 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. Well-constituent pair annual alpha = 0.001588. Individual comparison alpha = 0.0007943 (1 of 3).

Within Limit Prediction Limit Intrawell Parametric



Background Data Summary: Mean=1.746, Std. Dev.=0.1907, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9463, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.0188.

Constituent: Boron Analysis Run 9/7/2022 12:11 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

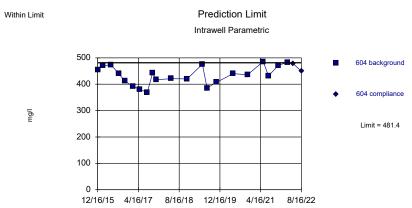
Background Data Summary: Mean=470.6, Std. Dev.=21.04, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9534, critical = 0.863. Kappa = 1.379 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Boron, Calcium Analysis Run 9/7/2022 12:44 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	604	604	605	605	506	506	601	601
12/16/2015	4.62				479		469	
12/17/2015			2.02					
2/16/2016	4.88		2.03		448		481	
5/23/2016	5.06		2.02		404		473	
8/22/2016	5.5		1.89		393		502	
11/7/2016	4.98		1.85					
11/8/2016					363		481	
2/7/2017	5.13		1.84		322		427	
5/1/2017					361			
5/2/2017	4.74		1.78				430	
7/31/2017	4.75		1.74		346		480	
10/2/2017	5.14		1.87		341		508	
11/15/2017					354		498	
5/14/2018	4.35		1.73		347		453	
11/19/2018	4.36		1.68		346		456	
5/21/2019	4.86		1.65		357		472	
7/15/2019							472	
11/5/2019	4.3		1.5		341		457	
5/21/2020	3.76		1.45		343		478	
11/10/2020	4.82		1.47		367		479	
5/17/2021	5.32		1.54					
5/18/2021					375		466	
11/16/2021	5.92		1.63		353		460	
1/24/2022	5.31							
5/10/2022		5.79		5.76		342		439
7/13/2022		_{5.58} 1st Verific	ation	1.54				
8/16/2022		5.14 2nd Verifi	cation					

Within Limit Prediction Limit


Intrawell Parametric

Background Data Summary: Mean=338.5, Std. Dev.=25.22, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9391, critical = 0.863. Kappa = 1.379 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.0132

Constituent: Calcium Analysis Run 9/7/2022 12:11 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

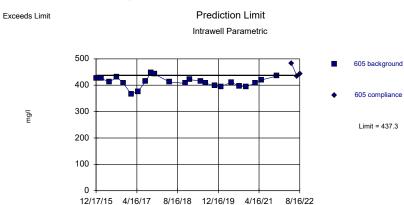
Background Data Summary: Mean=433.8, Std. Dev.=35.16, n=21. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.957, critical = 0.873. Kappa = 1.353 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 9/7/2022 12:11 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric



Background Data Summary: Mean=427.1, Std. Dev.=25.5, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9795, critical = 0.868. Kappa = 1.362 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 9/7/2022 12:11 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=411.8, Std. Dev.=19.1, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9727, critical = 0.881. Kappa = 1.336 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188

Constituent: Calcium Analysis Run 9/7/2022 12:44 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

ı	602	602	603	603	604	604	605	605
12/16/2015	373		444		454			
12/17/2015							427	
2/16/2016	372		445		470		426	
5/23/2016	355		429		474		412	
8/22/2016	353		445		440		431	
11/7/2016	353		437		412		407	
2/7/2017	314		409		392		367	
5/2/2017	310		405		381		376	
7/31/2017	354		434		369		415	
10/2/2017	375		476		442		447	
11/15/2017	370		471		417		442	
12/29/2017			455					
5/14/2018	340		426		421		412	
11/19/2018	332		423		420		407	
1/10/2019	335						421	
5/21/2019	342		429		476		416	
7/15/2019			424		386		407	
11/5/2019	325		410		407		399	
1/14/2020							395	
5/21/2020	313		397		440		411	
8/26/2020							396	
11/10/2020	313		410		436		395	
3/1/2021							407	
5/17/2021	311		403		486		420	
7/19/2021					432			
11/16/2021	292		370		472		435	
3/1/2022					483			
5/10/2022		302		366		478		482
7/13/2022								434 1st Verification
8/16/2022						449 Extra San	nple	⁴⁴⁴ 2nd Verification

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=80.62, Std. Dev.=7.599, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9501, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Chloride Analysis Run 9/7/2022 12:12 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

602 background
602 compliance
Limit = 5.007

Background Data Summary (based on square root transformation): Mean=2.065, Std. Dev.=0.1269, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.876, critical = 0.868. Kappa = 1.362 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit Prediction Limit
Intrawell Parametric

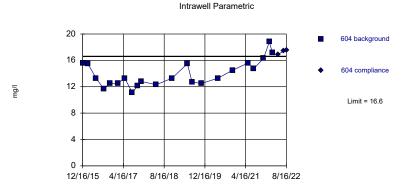

Background Data Summary (based on cube transformation): Mean=131532, Std. Dev.=37536, n=20. Normality test: Shapiro Wilk @alpha = 0.011, calculated = 0.885, critical = 0.868. Kappa = 1.362 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 9/7/2022 12:12 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas $^{\mbox{\tiny{MV}}}$ v.9.6.35 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit Intrawell Parametric


Background Data Summary: Mean=7.273, Std. Dev.=0.8721, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9664, critical = 0.868. Kappa = 1.362 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 9/7/2022 12:44 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

ı	506	506		601	602	602	603	603	
12/16/2015	92.4		52.5		4.48		7.33		
2/16/2016	97.2		53		4.38		7.65		
5/23/2016	84.7		50.6		4.29		7.64		
8/22/2016	77.5		45.5		4.65		7.9		
11/7/2016					4.35		7.67		
11/8/2016	73.1		47.5						
2/7/2017	79		49		4.04		7.35		
5/1/2017	79.2								
5/2/2017			51.1		4.69		7.67		
7/31/2017	71.9		52.7		4.28		8.03		
10/2/2017	74.4		52.4		6.06		8.37		
11/15/2017	77.7		54.2		4.93		7.83		
12/29/2017					4.44				
5/14/2018	79		55		4.14		7.16		
11/19/2018	83.1		49.6		3.97		6.76		
1/10/2019					3.71				
5/21/2019	76		55.5		4.11		8.24		
7/15/2019			56.5				8.75		
8/19/2019			54.5				6.54		
11/5/2019	74.5		52.8		3.69		6.66		
5/21/2020	69.3		53.8		3.99		5.93		
11/10/2020	84.5		33.4		3.77		6.27		
5/17/2021					3.95		6.17		
5/18/2021	91.3		48.6						
11/16/2021	86.3		36.6		3.65		5.53		
5/10/2022		88.8		39.8		4.22		<10	
7/13/2022								6.64	1st Verification

Exceeds Limit Prediction Limit

Background Data Summary: Mean=13.96, Std. Dev.=1.963, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9263, critical = 0.878. Kappa = 1.344 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Chloride Analysis Run 9/7/2022 12:12 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose


Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

4000
3200
506 background
506 compliance
Limit = 3232

Background Data Summary: Mean=2774, Std. Dev.=324, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9102, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Background Data Summary (based on square root transformation): Mean=7.28, Std. Dev.=0.3988, n=28. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8962, critical = 0.896. Kappa = 1.3 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.001882.

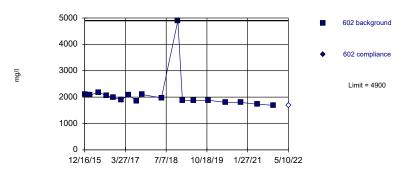
Constituent: Chloride Analysis Run 9/7/2022 12:12 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric 601 background 601 compliance Limit = 4866

Background Data Summary: Mean=4407, Std. Dev.=324.9, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9357, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

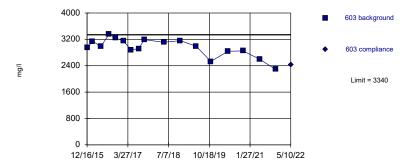

Constituent: Chloride, Dissolved Solids Analysis Run 9/7/2022 12:45 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	604	604	605	605	506	506	601	601
12/16/2015	15.6				3540		4470	
12/17/2015			43.9					
2/16/2016	15.5		45.7		3280		4280	
5/23/2016	13.3		47.3		2910		4530	
8/22/2016	11.7		46.5		3260		4810	
11/7/2016	12.5		48.2					
11/8/2016					2710		4370	
2/7/2017	12.5		48		2790		4640	
5/1/2017					2760			
5/2/2017	13.3		48.7				4530	
7/31/2017	11.1		49.1		2620		4030	
10/2/2017	12.1		48.7		2670		4790	
11/15/2017	12.8		48.8					
5/14/2018	12.3		47.8		2560		4760	
11/19/2018	13.3		51.7		2430		4100	
1/10/2019			50.9					
3/13/2019			52.4					
5/21/2019	15.5		55.4		2460		4410	
7/15/2019	12.7		57.8					
8/19/2019			57.9					
11/5/2019	12.5		59.1		2280		3880	
1/14/2020			60.5					
2/3/2020			59.8					
5/21/2020	13.3		60.2		2800		4680	
7/14/2020			62.1					
8/26/2020			61.6					
11/10/2020	14.5		59.7		2620		4280	
2/3/2021			59.3					
3/1/2021			58.2					
5/17/2021	15.6		52.5		0000		1050	
5/18/2021	44.7				2800		4650	
7/19/2021	14.7		40.0		0070		2710	
11/16/2021	16.3		46.6		2670		3710	
1/24/2022	18.8							
3/1/2022 5/10/2022	17.2	16.9		16.3		2800		4680
5/10/2022 7/13/2022			st Verification	10.3		2000		4000
8/16/2022				36.7 Extra Sar	mple			
0/10/2022		17.5		30.7				

Hollow symbols indicate censored values.

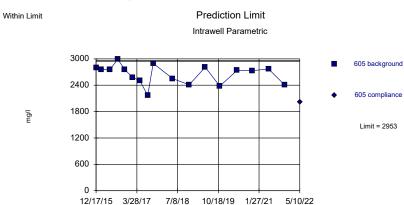
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. Well-constituent pair annual alpha = 0.001588. Individual comparison alpha = 0.0007943 (1 of 3).


> Constituent: Dissolved Solids Analysis Run 9/7/2022 12:12 PM View: LF CCR III

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limit Intrawell Parametric 4000 604 background 3200 604 compliance 2400 Limit = 3088 1600 800 12/16/15 3/27/17 7/7/18 10/18/19 1/27/21 5/10/22

Background Data Summary: Mean=2667, Std. Dev.=301.5, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9659, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG



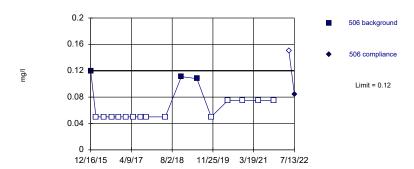
Background Data Summary: Mean=2951, Std. Dev.=275.4, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9307, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha =

> Constituent: Dissolved Solids Analysis Run 9/7/2022 12:12 PM View: LF CCR III

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=2648, Std. Dev.=215.8, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9355, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha =

Constituent: Dissolved Solids Analysis Run 9/7/2022 12:45 PM View: LF CCR III


Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	602	602	603	603	604	604	605	605
12/16/2015	2100		2940		2820			
12/17/2015							2800	
2/16/2016	2080		3140		2690		2750	
5/23/2016	2180		2990		3010		2760	
8/22/2016	2060		3350		2890		2990	
11/7/2016	1990		3240		2270		2760	
2/7/2017	1890		3150		2670		2580	
5/2/2017	2080		2880		2350		2500	
7/31/2017	1860		2920		2070		2170	
10/2/2017	2100		3190		2570		2900	
5/14/2018	1970		3110		2820		2550	
11/19/2018	4900		3160		2320		2410	
1/10/2019	1870							
5/21/2019	1870		2990		3270		2810	
7/15/2019					2680			
11/5/2019	1880		2530		2340		2380	
5/21/2020	1800		2840		2780		2740	
11/10/2020	1800		2850		2790		2730	
5/17/2021	1730		2600		2960		2770	
11/16/2021	1690		2290		2710		2410	
5/10/2022		1680		2430		1940		2010

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 17 background values. 82.35% NDs. Well-constituent pair annual alpha = 0.00182. Individual comparison alpha = 0.0009102 (1 of 3).

Constituent: Fluoride Analysis Run 9/7/2022 12:12 PM View: LF CCR III

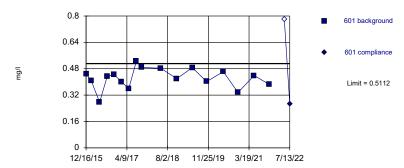
Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

12/16/15 4/9/17

Within Limit Prediction Limit Intrawell Non-parametric

0.2
0.16
0.12
0.08
0.04
Limit = 0.148

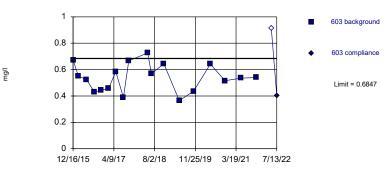

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 17 background values. 52.94% NDs. Well-constituent pair annual alpha = 0.00182. Individual comparison alpha = 0.0009102 (1 of 3).

8/2/18 11/25/19 3/19/21 7/13/22

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit
Intrawell Parametric


Background Data Summary: Mean=0.4235, Std. Dev.=0.06209, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9682, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.0182

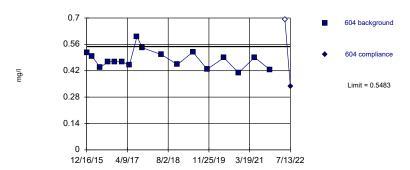
Constituent: Fluoride Analysis Run 9/7/2022 12:12 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

 $\mbox{Sanitas} \mbox{$^{\text{IN}}$ v.9.6.35 Sanitas software licensed to SCS Engineers. UG Hollow symbols indicate censored values.}$

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=0.5385, Std. Dev.=0.1047, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9676, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Fluoride Analysis Run 9/7/2022 12:45 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	506	506	601	601	602	602	603	603
12/16/2015	0.12		0.45		0.148		0.673	
2/16/2016	<0.1		0.406		<0.1		0.552	
5/23/2016	<0.1		0.276		<0.1		0.523	
8/22/2016	<0.1		0.435		0.114		0.431	
11/7/2016					<0.1		0.442	
11/8/2016	<0.1		0.446					
2/7/2017	<0.1		0.399		<0.1		0.459	
5/1/2017	<0.1							
5/2/2017			0.36		0.122		0.585	
7/31/2017	<0.1		0.526		0.116		0.388	
10/2/2017	<0.1		0.488		0.108		0.666	
5/14/2018	<0.1		0.483		0.113		0.727	
6/26/2018							0.568	
11/19/2018	0.111		0.42		<0.1		0.645	
5/21/2019	0.108		0.487		0.132		0.365	
11/5/2019	<0.1		0.402		0.14		0.436	
5/21/2020	<0.15		0.462		<0.15		0.642	
11/10/2020	<0.15		0.336		<0.15		0.516	
5/17/2021					<0.15		0.535	
5/18/2021	<0.15		0.439					
11/16/2021	<0.15		0.384		<0.15		0.54	
5/10/2022		<0.3		0.779 (j)		0.12 (j)		0.912 (j)
7/13/2022		_{0.0844} 1st Veri	fication	0.266 1st Veri	fication	0.118 1st Veri	fication	_{0.404} 1st Verification

Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=0.4803, Std. Dev.=0.04815, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9547, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha =

> Constituent: Fluoride Analysis Run 9/7/2022 12:12 PM View: LF CCR III

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limits Intrawell Non-parametric 10 506 background 506 compliance 8 Limit = 9.26 6 Limit = 5.11 2 12/16/15 4/9/17 8/2/18 11/25/19 3/19/21 7/13/22

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 18 background values. Well-constituent pair annual alpha = 0.003176. Individual comparison alpha = 0.001589 (1 of 3).

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=0.1994, Std. Dev.=0.02259, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9858, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha =

> Constituent: Fluoride Analysis Run 9/7/2022 12:12 PM View: LF CCR III

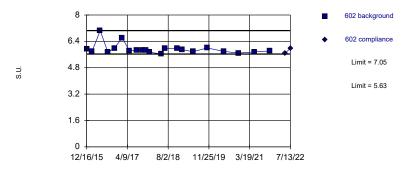
Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

12/16/15 4/9/17

Prediction Limit Within Limits Intrawell Parametric 601 background 601 compliance 4.8 Limit = 5.721 3.6 Limit = 5.221 2.4 1.2

Background Data Summary: Mean=5.471, Std. Dev.=0.186, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9737, critical = 0.878. Kappa = 1.344 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha =

8/2/18 11/25/19 3/19/21 7/13/22

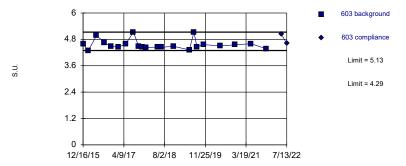

Constituent: Fluoride, pH Analysis Run 9/7/2022 12:45 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	604	604	605	605	506	506	601	601	
12/16/2015	0.515				5.11		5.12		
12/17/2015			0.246						
2/16/2016	0.497		0.156		5.56		5.73		
5/23/2016	0.437		0.166		5.47		5.58		
8/22/2016	0.468		0.191		5.57		5.44		
11/7/2016	0.468		0.203						
11/8/2016					6.04		5.26		
2/7/2017	0.467		0.187		9.26		5.41		
5/1/2017					5.51				
5/2/2017	0.45		0.197				5.45		
7/31/2017	0.601		0.2		5.51		5.44		
10/2/2017	0.542		0.184		5.59		5.61		
11/15/2017					5.58		5.49		
5/14/2018	0.506		0.226		5.61		5.64		
6/26/2018							5.35		
11/19/2018	0.453		0.187		5.55		5.48		
5/21/2019	0.519		0.222		5.49		5.34		
7/15/2019							5.96		
8/19/2019							5.41		
11/5/2019	0.428		0.195		5.44		5.2		
1/14/2020							5.51		
5/21/2020	0.489		0.219		5.53		5.42		
11/10/2020	0.409		0.182		5.44		5.66		
5/17/2021	0.491		0.216				5.56		
5/18/2021					5.73				
11/16/2021	0.425		0.212		5.53		5.3		
5/10/2022		0.691 (j)		0.765 (j)		5.21		5.27	4 - 4 \ / - vifi 4i - v
7/13/2022		0.336 1st Verif	ication	0.16 1st Verific	cation	5.74 1st Verifi	cation	5.54	1st Verification

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 21 background values. Well-constituent pair annual alpha = 0.002044. Individual comparison alpha = 0.001022 (1 of 3).


> Constituent: pH Analysis Run 9/7/2022 12:12 PM View: LF CCR III

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limits Intrawell Parametric 604 background 604 compliance Limit = 6.084 4.2 Limit = 5.534 2.8 1.4 12/16/15 4/16/17 8/16/18 12/16/19 4/16/21 8/16/22

Background Data Summary: Mean=5.809, Std. Dev.=0.2044, n=22. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9239, critical = 0.878. Kappa = 1.344 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha =

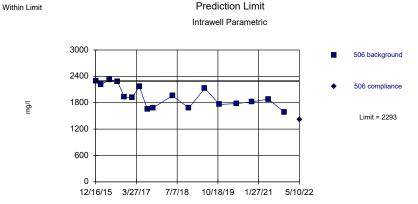
Prediction Limit Within Limits Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 22 background values. Well-constituent pair annual alpha = 0.001837. Individual comparison alpha = 0.0009189 (1 of 3).

> Constituent: pH Analysis Run 9/7/2022 12:12 PM View: LF CCR III

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Prediction Limit Within Limits Intrawell Parametric 605 background 605 compliance 5.6 Limit = 5.814 4.2 Limit = 5.366 2.8 1.4 8/16/00 1/2/05 5/21/09 10/7/13 2/23/18 7/13/22

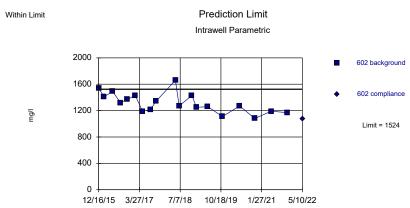

Background Data Summary: Mean=5.59, Std. Dev.=0.1739, n=30. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.919, critical = 0.9. Kappa = 1.288 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH Analysis Run 9/7/2022 12:45 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

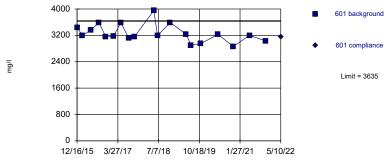
1	602	602	603	603	604	604	ı	605	605		
8/16/2000								5.34			
12/16/2015	5.93		4.58		5.79						
12/17/2015								5.57			
2/16/2016	5.78		4.29		5.51			5.34			
5/23/2016	7.05		4.98		6.3			6.11			
8/22/2016	5.74		4.65		5.67			5.42			
11/7/2016	5.99		4.48		6.04			5.49			
2/7/2017	6.62		4.44		6.1			5.58			
5/2/2017	5.81		4.6		5.72			5.58			
7/31/2017	5.87		5.13		5.82			5.55			
10/2/2017	5.86		4.48		5.72			5.58			
11/15/2017	5.87		4.44		5.73			5.55			
12/29/2017	5.74		4.43								
5/14/2018	5.63		4.45		5.7			5.48			
6/26/2018	5.98		4.44					5.6			
11/19/2018	5.98		4.48		5.75			5.5			
1/10/2019	5.9							5.79			
3/13/2019								5.73			
5/21/2019	5.77		4.32		5.82			5.64			
7/15/2019			5.13		6.2			5.85			
8/19/2019			4.46					5.42			
11/5/2019	6		4.56		5.89			5.59			
1/14/2020								5.66			
2/3/2020								5.64			
	5.79		4.5		5.54			5.42			
7/14/2020								5.66			
8/26/2020								5.62			
	5.69		4.55		5.58			5.58			
2/3/2021								5.66			
3/1/2021								5.96			
5/17/2021	5.76		4.6		5.98			5.36			
7/19/2021					5.69						
11/16/2021	5.82		4.37		5.66			5.44			
1/24/2022					5.82						
3/1/2022					5.77						
5/10/2022		5.68		5.04		5.46			5.36	4 - 4 \ / - wifi 4i - · ·	
7/13/2022		_{5.97} Extra San	npie	4.61 Extra San	nple		1st Verif	ıcation	5.4	1st Verification	
8/16/2022						5.72	Extra Sa	ample			

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG



Background Data Summary: Mean=1945, Std. Dev.=246.3, n=17. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9263, critical = 0.851. Kappa = 1.413 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.0192

Constituent: Sulfate Analysis Run 9/7/2022 12:12 PM View: LF CCR III


Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=1315, Std. Dev.=151.2, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.97, critical = 0.863. Kappa = 1.379 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit Prediction Limit Intrawell Parametric

Background Data Summary: Mean=3258, Std. Dev.=273.4, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9249, critical = 0.863. Kappa = 1.379 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Sulfate Analysis Run 9/7/2022 12:12 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit Prediction Limit Intrawell Parametric

3000
2400
1800
1200
603 background
603 compliance
Limit = 2716

Background Data Summary: Mean=2331, Std. Dev.=275.9, n=18. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.951, critical = 0.858. Kappa = 1.396 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Sulfate Analysis Run 9/7/2022 12:45 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	506	506	601	601	602	602	603	603
12/16/2015	2290		3430		1540		2440	
2/16/2016	2210		3200		1410		2470	
5/23/2016	2330		3360		1490		2760	
8/22/2016	2280		3590		1320		2710	
11/7/2016					1370		2760	
11/8/2016	1930		3160					
2/7/2017	1920		3180		1430		2500	
5/1/2017	2170							
5/2/2017			3590		1190		2220	
7/31/2017	1650		3110		1210		2330	
10/2/2017	1680		3150		1340		2370	
5/14/2018	1960		3950		1660		2080	
6/26/2018			3190		1270			
11/19/2018	1680		3590		1430		2590	
1/10/2019					1250			
5/21/2019	2130		3230		1260		2480	
7/15/2019			2900				2020	
11/5/2019	1760		2950		1110		2010	
5/21/2020	1780		3230		1270		2140	
11/10/2020	1820		2860		1080		2090	
5/17/2021					1190		2130	
5/18/2021	1880		3200					
11/16/2021	1590		3030		1170		1860	
5/10/2022		1420		3160		1070		1810

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Within Limit

Intrawell Parametric

3000
2400
1800
1200
604 background
604 compliance
Limit = 2215

Prediction Limit

Background Data Summary: Mean=1908, Std. Dev.=222.6, n=19. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9335, critical = 0.863. Kappa = 1.379 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Sulfate Analysis Run 9/7/2022 12:13 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Sanitas™ v.9.6.35 Sanitas software licensed to SCS Engineers. UG

Background Data Summary: Mean=1962, Std. Dev.=212.3, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9378, critical = 0.881. Kappa = 1.336 (c=7, w=4, 1 of 3, event alpha = 0.05132). Report alpha = 0.01188

Constituent: Sulfate Analysis Run 9/7/2022 12:13 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

Constituent: Sulfate Analysis Run 9/7/2022 12:45 PM View: LF CCR III

Montrose Generating Station UWL Client: SCS Engineers Data: Montrose

	604	604	605	605	
12/16/2015	2060				
12/17/2015			2180		
2/16/2016	2080		1950		
5/23/2016	1990		1880		
8/22/2016	2290		2230		
11/7/2016	2070		2280		
2/7/2017	1810		2050		
5/2/2017	1710		1910		
7/31/2017	1470		1890		
10/2/2017	1710		1920		
5/14/2018	2010		2510		
6/26/2018			1960		
11/19/2018	2110		2260		
1/10/2019			1870		
5/21/2019	2090		1970		
7/15/2019	1510		1640		
11/5/2019	1650		1730		
1/14/2020			1860		
5/21/2020	1920		1940		
8/26/2020			1690		
11/10/2020	1740		1790		
3/1/2021	1,70		1790		
5/17/2021	2090		2040		
11/16/2021	1940		1850		
			1650		
3/1/2022	2000	2000		2000	
5/10/2022		2000 2120 Ext	ra Sample	2000	Evtra Campla
8/16/2022		2130 Ext	ia Gairipi c	2090	Extra Sample

		Montrose (Generating Sta	tion UWL Client	:: SCS Engineers	Data: M	lontros	e Pı	rinted 9/13/	2022, 8:30 AM		
<u>Constituent</u>	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Obse	erv. S	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/l)	506	0.2	n/a	5/10/2022	0.1N	D N	No	17	100	n/a	0.000	NP Intra (NDs) 1 of 3
Boron (mg/l)	601	0.203	n/a	5/10/2022	0.1N	D N	No	17	94.12	n/a	0.000	NP Intra (NDs) 1 of 3
Boron (mg/l)	602	5.05	n/a	5/10/2022	4.05	N	No	17	0	No	0.00188	Param Intra 1 of 3
Boron (mg/l)	603	7.112	n/a	5/10/2022	5.23	N	No	18	0	No	0.00188	Param Intra 1 of 3
Boron (mg/l)	604	5.577	n/a	8/16/2022	5.14	N	No	18	0	No	0.00188	Param Intra 1 of 3
Boron (mg/l)	605	2.016	n/a	7/13/2022	1.54	N	No	17	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/l)	506	479	n/a	5/10/2022	342	N	No	18	0	n/a	0.000	NP Intra (normality)
Calcium (mg/l)	601	499.6	n/a	5/10/2022	439	N	No	19	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/l)	602	373.3	n/a	5/10/2022	302	N	No	19	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/l)	603	461.8	n/a	5/10/2022	366	N	No :	20	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/l)	604	481.4	n/a	8/16/2022	449	N	No :	21	0	No	0.00188	Param Intra 1 of 3
Calcium (mg/l)	605	437.3	n/a	8/16/2022	444	Υ	es :	23	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/l)	506	91.22	n/a	5/10/2022	88.8	N	No	18	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/l)	601	56.74	n/a	5/10/2022	39.8	N	No :	20	0	x^3	0.00188	Param Intra 1 of 3
Chloride (mg/l)	602	5.007	n/a	5/10/2022	4.22	N	No :	20	0	sqrt(x)	0.00188	Param Intra 1 of 3
Chloride (mg/l)	603	8.46	n/a	7/13/2022	6.64	N	No :	20	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/l)	604	16.6	n/a	8/16/2022	17.5	Υ	es :	22	0	No	0.00188	Param Intra 1 of 3
Chloride (mg/l)	605	60.82	n/a	8/16/2022	36.7	N	No :	28	0	sqrt(x)	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	506	3232	n/a	5/10/2022	2800) N	No ·	17	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	601	4866	n/a	5/10/2022	4680) N	No '	17	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	602	4900	n/a	5/10/2022	1680	J N	No	18	0	n/a	0.000	NP Intra (normality)
Dissolved Solids (mg/l)	603	3340	n/a	5/10/2022	2430) N	No '	17	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	604	3088	n/a	5/10/2022	1940) N	No ·	18	0	No	0.00188	Param Intra 1 of 3
Dissolved Solids (mg/l)	605	2953	n/a	5/10/2022	2010) N	No '	17	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/l)	506	0.12	n/a	7/13/2022	0.08	44 N	No '	17	82.35	n/a	0.000	NP Intra (NDs) 1 of 3
Fluoride (mg/l)	601	0.5112	n/a	7/13/2022	0.26	6 N	No '	17	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/l)	602	0.148	n/a	7/13/2022	0.11	8 N	No	17	52.94	n/a	0.000	NP Intra (NDs) 1 of 3
Fluoride (mg/l)	603	0.6847	n/a	7/13/2022	0.40	4 N	No '	18	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/l)	604	0.5483	n/a	7/13/2022	0.33	6 N	No	17	0	No	0.00188	Param Intra 1 of 3
Fluoride (mg/l)	605	0.2313	n/a	7/13/2022	0.16	N	No	17	0	No	0.00188	Param Intra 1 of 3
pH (S.U.)	506	9.26	5.11	7/13/2022	5.74	N	No	18	0	n/a	0.001589	NP Intra (normality)
pH (S.U.)	601	5.721	5.221	7/13/2022	5.54	N	No :	22	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	602	7.05	5.63	7/13/2022	5.97	N	No :	21	0	n/a	0.001022	NP Intra (normality)
pH (S.U.)	603	5.13	4.29	7/13/2022	4.61	N	No :	22	0	n/a	0.000	NP Intra (normality)
pH (S.U.)	604	6.084	5.534	8/16/2022	5.72	N	No :	22	0	No	0.000	Param Intra 1 of 3
pH (S.U.)	605	5.819	5.379	7/13/2022	5.4	N	No :	29	0	No	0.000	Param Intra 1 of 3
Sulfate (mg/l)	506	2293	n/a	5/10/2022	1420) N	No	17	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/l)	601	3635	n/a	5/10/2022	3160) N	No	19	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/l)	602	1524	n/a	5/10/2022	1070) N	No	19	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/l)	603	2716	n/a	5/10/2022	1810) N	No	18	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/l)	604	2215	n/a	8/16/2022	2130) N	No	19	0	No	0.00188	Param Intra 1 of 3
Sulfate (mg/l)	605	2245	n/a	8/16/2022	2090) N	No :	23	0	No	0.00188	Param Intra 1 of 3

Montrose Generating Station Determination of Statistically Significant Increases CCR Landfill September 28, 2022

ATTACHMENT 2

Sanitas[™] Configuration Settings

Data	Output	Trend Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Exclud	le data flag	s: i							
Data	Reading O	otions							
● In	ndividual Ob	servations							
\bigcirc M	lean of Eac	h:	O Month						
O M	ledian of Ea	ach:	Seasor	ı					
Non	Dotoot / Te	ace Handling.							
		_	•••						
Setup	Seasons								
Aut	omatically F	Process Resar	mples						

_	_
Black and White Output	✓ Prompt to Overwrite/Append Summary Tables
✓ Four Plots Per Page	Round Limits to 2 Sig. Digits (when not set in data file)
Always Combine Data Pages	User-Set Scale
✓ Include Tick Marks on Data Page	✓ Indicate Background Data
Use Constituent Name for Graph Title	Show Exact Dates
☐ Draw Border Around Text Reports and Data Pages	☐ Thick Plot Lines
☑ Enlarge/Reduce Fonts (Graphs): 100%	7 5 1 2000
☑ Enlarge/Reduce Fonts (Data/Text Reports): 100%	Zoom Factor: 200% V
✓ Wide Margins (on reports without explicit setting)	Output Decimal Precision
Use CAS# (Not Const. Name)	C Less Precision
Truncate File Names to 20 Characters	Normal Precision
Include Limit Lines when found in Database	More Precision
✓ Show Deselected Data on Time Series Lighter ✓	
Show Deselected Data on all Data Pages Light	
Show beselected bata on all bata rages Light	
Setup Symbols and Colors	
✓ Store Pri	int Jobs in Multiple Constituent Mode Store All Print Jobs
	Story at this obs
Printer: Adobe PDF	∨ Printers

Data Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests

Data 0	Output Tre	end Test	Control Cht	Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
Use N	Modified Alpha	ia							
✓ Test F	Residuals For	r Normality	(Parametric t	est only) using	Shapiro-Wilk/Fr	ancia v	at Alpha	= 0.01	~
ПС	ontinue Parar	metric if U	nable to Nom	nalize					
Transfor Use Natu Nev Use	mation (Parar e Ladder of Po cural Log or Nover Transform e Specific Tra e Best W Stat	metric test 'owers lo Transfor n ansformatio	mation						
Use Non-	-Parametric T	Test (Sen's	Slope/Mann	-Kendall) when I	Non-Detects Pero	cent > 75			
Includ	de 95. % C	Confidence	e Interval arou	and Trend Line					
Autom	natically Rem	nove Outlie	ers (Parametri	c test only)					
		•			is tab because, f eport in its own ri				

Transformation ■ Use Ladder of Powers Natural Log or No Transformation Never Transform Use Non-Parametric Test when Non-Detects Percent > 50 Use Non-Parametric Test when Non-Detects Percent > 15 Optional Further Refinement: Use Aitchison's when NDs % > 50 Use Poisson Prediction Limit when Non-Detects Percent > 90 Deseasonalize (Intra- and InterWell) If Seasonality Is Detected If Seasonality Is Detected Or Insufficient to Test Always (When Sufficient Data) Always (When Sufficient Data) Never Always Use Non-Parametric Facility □ □ Statistical Evaluations per Year: Constituents Analyzed: Downgradient (Compliance) Wells: Sampling Plan Transformation Use Ladder of Powers Natural Log or No Transformation: Never Transformation Use Specific Transformation: Natural Log or No Transformation Never Transform Use Specific Transformation: Natural Log or No Transformation Never Transform Use Specific Transformation: Natural Log or No Transformation Never Transform Use Specific Transformation: Natural Log or No Transformation Never Transform Use Specific Transformation: Natural Log or No Transform	Data Output Trend Test Control Cht Prediction Lim	Tolerance Lim	Conf/Tol Int	ANOVA	Welchs	Other Tests
✓ Use Non-Parametric Test when Non-Detects Percent > 50 ○ Never Transform Use Aitchison's Adjustment ∨ when Non-Detects Percent > 15 ○ Use Specific Transformation: ○ Optional Further Refinement: Use Aitchison's ○ when NDs % > 50 ○ Use Best W Statistic ○ Use Best W Statistic ○ Use Poisson Prediction Limit when Non-Detects Percent > 90 ○ IntraWell Other ○ If Seasonality Is Detected ○ IntraWell Other ○ If Seasonality Is Detected Or Insufficient to Test ○ Plot Background Trend Detected at Alpha = 0.05 ∨ ○ Always (When Sufficient Data) ○ Never ○ Always Use Non-Parametric ○ Override Standard Deviation: ○ Override DF: ○ Override Kappa: ○ Automatically Remove Background Outliers ○ 2-Tailed Test Mode ○ Show Deselected Data □ Use Best W Statistic ○ Use Best W Statistic ○ Override Values					r of Powers	
Use Aitchison's Adjustment when Non-Detects Percent > 15 Optional Further Refinement: Use Aitchison's when NDs % > 50 Use Best W Statistic Use Poisson Prediction Limit when Non-Detects Percent > 90 Deseasonalize (Intra- and InterWell) If Seasonality Is Detected If Seasonality Is Detected Or Insufficient to Test Always (When Sufficient Data) Never Always Use Non-Parametric Facility Always Use Non-Parametric Facility Constituents Analyzed: Downgradient (Compliance) Wells: Sampling Plan Use Specific Transformation: Natural Log Use Best W Statistic IntraWell Other Stop if Background Trend Detected at Alpha = 0.05 Plot Background Data Override Standard Deviation: Override Standard Deviation: Override DF: Automatically Remove Background Outliers 2-Tailed Test Mode Show Deselected Data Lighter Non-Parametric Limit = Highest Background Value		at Alpha = 0.01	~ 0	Natural Log	or No Tran	
Optional Further Refinement: Use Aitchison's when NDs % > 50 Use Best W Statistic Use Poisson Prediction Limit when Non-Detects Percent > 90 Plot Transformed Values Deseasonalize (Intra- and InterWell) Statistical Evaluations per Year: Statistical Evaluations per Year: IntraWell Other Stop if Background Trend Detected at Alpha = 0.05 ✓ ✓ Plot Background Data Override Standard Deviation: Override Standard Deviation: ✓ Override DF: Override Kappa: ✓ Automatically Remove Background Outliers 2-Tailed Test Mode ✓ Show Deselected Data Lighter Non-Parametric Limit = Highest Background Value		0	0			nation:
Use Poisson Prediction Limit when Non-Detects Percent > 90 □ Plot Transformed Values Deseasonalize (Intra- and InterWell) □ IntraWell Other □ Stop if Background Trend Detected at Alpha = 0.05 ∨ Plot Background Data □ Override Standard Deviation: □ Override Standard Deviation: □ Override Standard Deviation: □ Override Standard Deviation: □ Override DF: □ Override Kappa: □ Automatically Remove Background Outliers □ 2-Tailed Test Mode □ Show Deselected Data □ Lighter ∨ Non-Parametric Limit = Highest Background Value ∨ Non-Parametric Limit = Highest Background Value ∨ Non-Parametric Limit when 100% Non-Parametr				•	Natura	l Log 🔍
Deseasonalize (Intra- and InterWell) ○ If Seasonality Is Detected ○ If Seasonality Is Detected Or Insufficient to Test ○ Always (When Sufficient Data) ○ Never ○ Always Use Non-Parametric Facility ○ □ Statistical Evaluations per Year: Constituents Analyzed: Downgradient (Compliance) Wells: Sampling Plan IntraWell Other ○ Stop if Background Trend Detected at Alpha = 0.05 ∨ ○ Plot Background Data Override Standard Deviation: Override DF: ○ Override Kappa: ○ Automatically Remove Background Outliers ○ 2-Tailed Test Mode ○ Show Deselected Data Lighter ∨ Non-Parametric Limit = Highest Background Value ∨ Non-Parametric Limit when 100% Non-Detectes:			50			
Stop if Background Trend Detected at Alpha = 0.05 ✓ If Seasonality Is Detected Or Insufficient to Test Always (When Sufficient Data) Never Plot Background Trend Detected at Alpha = 0.05 ✓ Plot Background Data Override Standard Deviation: Override DF: Override Kappa: Automatically Remove Background Outliers 2-Tailed Test Mode Show Deselected Data Lighter ✓ Non-Parametric Limit = Highest Background Value ✓ Non-Parametric Limit when 100% Non-Detects:	Use Poisson Prediction Limit when Non-Detects Percent >	90		Plot Transfo	med Value	ės
Sampling Plan Non-Parametric Limit when 100% Non-Detects:	Off Seasonality Is Detected Off Seasonality Is Detected Or Insufficient to Test Off Always (When Sufficient Data) Off Never ☐ Always Use Non-Parametric Facility ☐ α Statistical Evaluations per Year: Constituents Analyzed:	Stop if I Plot Bac Override St Override Di Automa 2-Tailed Show D	Background Treckground Data andard Deviat F: (1) tically Remove I Test Mode Deselected Dat	on: Override Kap Backgroun Lighter	ppa:	
Comparing Individual Observations 1 of 1 1 of 2 1 of 3 1 of 4 2 of 4 ("Modified California") Highest/Second Highest Background Value Most Recent PQL if available, or MDL Most Recent Background Value (subst. method)	Comparing Individual Observations 1 of 1 1 of 2 1 of 3 1 of 4	Non-Parame Highest Most R	etric Limit wher t/Second High ecent PQL if a	n 100% Non nest Backgro vailable, or	-Detects: ound Value MDL	

ata Output Trend Test Control Cht Prediction Lim Tolerance Lim Conf/Tol Int ANOVA Welchs Other Tests
Rank Von Neumann, Wilcoxon Rank Sum / Mann-Whitney
Use Modified Alpha 2-Tailed Test Mode Combine Background Wells on Mann-Whitney
Outlier Tests
○ EPA 1989 Outlier Screening (fixed alpha of 0.05)
\bullet Dixon's at $\alpha = 0.05 \lor$ or if n > 22 \lor Rosner's at $\alpha = 0.01 \lor$ Use EPA Screening to establish Suspected Outliers
☐ Tukey's Outlier Screening, with IQR Multiplier = 3.0 ☐ Use Ladder of Powers to achieve Best W Stat
✓ Test For Normality using Shapiro-Wilk/Francia ∨ at Alpha = 0.1 ∨
Stop if Non-Normal
O Continue with Parametric Test if Non-Normal
Tukey's if Non-Normal, with IQR Multiplier = 3.0 ✓ Use Ladder of Powers to achieve Best W Stat
☑ No Outlier If Less Than 3.0 Times Median
Apply Rules found in Ohio Guidance Document 0715
Combine Background Wells on the Outlier Report
Piper, Stiff Diagram
☐ Combine Wells ☑ Label Constituents
☐ Combine Dates ☐ Label Axes
Use Default Constituent Names Note Cation-Anion Balance (Piper only)
Use Constituent Definition File Edit